Usage Billing with BEAM

Narayanan Venkiteswaran Jinjing Bi

Engineering Senior Software
Manager Engineer

1 What is Usage Billing

2 Challenges
Agendo

3 New System

4 Why Beam

LinkedIn helps companies around
the world hire, learn, market and sell

D
S
96%

of the Fortune 500

use multiple
LinkedIn enterprise
products

#1 Top 3

platform for BZB digital
professional hiring, advertising
corporate learning, platform
& sales intelligence

’
£
..... L S—
o s < - Linked)

Usage Billing

Pay-as-you-go model: Customers are charged
based on their actual consumption of a service
or resource.

Threshold Billing: A charge is friggered when
usage reaches a predetermined threshold,
rather than at fixed time intervals. This can help
manage cash flow for both providers and
customers.

Variable costs: Bills fluctuate month-to-month
depending on the level of usage, rather than a
fixed recurring fee.

Transparent pricing: Customers typically have
access to detailed breakdowns of their usage
and associated costs.

Usage Billing

Jobs AdS

Your charge amount depends on your job Your charge amount depends on dynamic,
posts’ budget and the numlber of views from auction-based system associated with your
candidates. ad.

Usage Billing

Multiple
Channels -

9000 Job

Applications / 30+ Currencies Self Serve / Rep

Assisted

min

Legacy Usage Billing

A e e mm Car tem e EEY SR fem e R SN e e R em G s e O e S e e) e e o e e e) e s e e e Ewn e a0 e) e e e G A e e e Sa A e e e e ms s e e S omes SR

i
{
! IbatchCreate
IbatchCreate

| | 1 l

, i <l e
I

Ads / Jobs service S /usages/create i usage-service <)
/usages/trigger i .

f Order DB

. o [
i
: — -
. f

updateDate lupdateDate

B
I
' v
: triggerBilling
' OMS billing-service
: (legacy) | triggerBillin Billing Stored
| Procedure
i
i
f
: —P Rules Billing Event
I Rules +
: Rules Database Event Queue
I —
I | o
. -
: RCHARGE
I
i
i
i
!
|

s e S e RS el A S O O e S e O e G B R RS G B G e e e O T B s e e S e e T s S e B B e e e S e e e e @ G T B e AR e e S R G R SR e e e R e

T S . e s S B PSS D S Y s S S OO D S Y e R B GO0 B G WY e SR B G B e W0 e SN BT e S BEe We0 Ome Ge SSU A B s Wb

Challenges

Batch

e The current system was
built to support only
batched workloads

e The whole process was in

the hands of the callers to

trngger the complete
batch

e Overtime, daily batch
processing becomes
Increasingly long
sfretching execution
windows.

Legacy Stack

e Used combination of
Stored Procedures and
Oracle AQ

e Code was wriften very
consumer specific and not
a platform friendly to
support additional use
case

e Scaling problems 1o
support higher loads

Fault Tolerance

e Hard to rectifty usages
once sent

e Can fail the batch if there
were problems with the
usages like encoding, bad
passed past by upstream.

Usage Billing %

Ads / Jobs service

Kafka

Me{eredBillingUsagesMessage

}‘

IbatchCreate

usage-ingestion
(Standalone Samza App)

billing-engine

Icharge——

usage-processor <

Insert Usage Records

Usage Billing DB

Change Data Capture events

v

usage-postprocessing
(Standalone Samza App)

Brooklin

G
|
|

[Y |

METERED BILLING USAGES

Consume

v

usage-brooklin-repartition
(Standalone Samza App)

Partitioned by lourceContract

;

Kafka

- —_——

b

1

MeteredBillingUsagesMessage

A

Consume

S S SRR NN RN B RN R RN B G SR R R B G SR TR G SR G B G R R G TR G SR S R RN G SRR G SRR DR AR AR G B R SRR TR R B GRS R G SR SR DR I G B R B R R SR R B SRR e e e o

invoicing

tax

Three Samza Jobs

Usage-Ingestion

e Reads messages from
Katka, unpacks individual
usages, applies various
filters, and performs
iIdempotency checks.

e De-dupes and
aggregates infraday
USQQES.

e Dead Letter Queue
Management

Usage-brooklin-repartition

e Reads usage dafa from o

Katka topic and
repartitions it based on
specific criteria to optimize
downstream processing.
Applies various filters and
tfransformations to the
data, ensuring that only
valid and necessary
records are processed.
Output to Katka for
consumption and
processing.

Usage-Postprocessing

Processes usages with
specific states such as
CREATED, HOLD, and
DELIVERED

Discards usages with
negative gross or discount
amounts.

Dead Letter Queue
Management

How Beam Is Useful

e Supports both batch and
sfreaming

e Supports multiple processing tiers -
Samza, Flink efc

e Usage billing needs sophisticated
windows which Beam can

support like
o Time based
o Amount based

o Action based

e Exactly-Once Processing support
which needed for a monetary
system

final PCollection<MeteredBillingUsagesMessage> input = readFromKafka(pipeline);
final PCollection<KV<com. linkedin.messages.lbp.billing.records.MeteredBillingUsage, ProductLineUrn>>
flattenedUsages =
input
.apply(ParDo.of(new UsageFlattenERJR()))
.setCoder(
KvCoder.of(
AvroCoder.of(com. linkedin.messages. lbp.billing.records.MeteredBillingUsage.class),
ProductLineUrnCoder.of()))
.apply("Filter the usages based on Source Contract", ParDo.of(new SourceContractFilterfEHA()));

// Get pointer to Idempotency Rocks db table
final PSeekableCollection<UsageEventIdempotencyKey, UsageEventIdempotencyValue> idempotencyTable =
getIdempotencyTable(pipeline);

// Write the Flattened Usages into the rocks db.
writeToIdempotenceStore(flattenedUsages, idempotencyTable);

// Check for each usage inside MeteredBillingUsagesMessage event if it has been processed
// already or not.

S ‘ (: d final PCollectionTuple idempotencyCheckOutput =
I I . e O e flattenedUsages.apply(

ParDo.of(new IdempotencyCheckiEHR(idempotencyTable)).withOutputTags(UNIQUE, TupleTagList.of(DUPLICATE)));

// All failures that happen in any stage of this pipeline are accumulated here and eventually
// written to a DLQ for retries
final List<PCollection<PipelineFailure>> failurePCollection = new ArrayList<>();

// Any failures that have to do with invalid messages will be accumulated here
// and written to the invalid message queue for LOBs to consume.
final List<PCollection<PipelineFailure>> invalidMessagePCollection = new ArrayList<>();

// Unpack the processed usages and convert them to MeteredBillingUsage PDL messages, keyed by
// SourceBillable
final PCollectionTuple usageUnpackfERROutput =
idempotencyCheckOutput
.get (UNIQUE)
.apply(
ParDo.of(new UsageUnpackiERR())
-withQutputTags (USAGE_UNPACK_SUCCESS_TAG, TupleTaglList.of(USAGE_UNPACK_FAILURE_OUTPUT_TAG)));

Questionse

