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I also have a dog.

Kenna would be upset if she didn’t get 
a mention here.
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Jack has



Why Use an LLM in a Beam Pipeline?

● LLMs are versatile models that can handle a variety of tasks
● Particularly excel with unstructured text input

○ Sentiment analysis
○ Summerization 

● Prompt engineering and model tuning can adapt these models for data 
processing workloads relatively well
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Working through an example 
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A users chat history

Chat ID : 4116

user_id 221: 

Hay I am really annoyed that your menu includes a pizza with pineapple on it!

user_id 331: 

Sorry to hear that , but pineapple is nice on pizza

user_id 221: 

What a terrible thing to say! Its never ok, so unhappy right now!
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Prompt the model

prompt_template = """

<prompt>

Provide the results of doing these two tasks on the chat history provided below for the user {}

task 1 : assess if the tone is happy = 1 , neutral = 0 or angry = -1

task 2 : summarize the text with a maximum of 512 characters

Output the results as a json with fields [sentiment, summary]

@@@{}@@@

<answer>

"""
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Analyse the reponse

{

"sentiment": 

-1,

"summary": 

"User 221 is very unhappy about the presence of pineapple on pizza."

}
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Create a respone
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Assist our support staff

Prompt: 

"Generate an apology response for the user in this chat text: {}"

Response:

"I understand that you're upset about the pineapple pizza. It's a very personal 
preference, and I apologize that it might have caused you some frustration. We 
strive to offer a diverse menu to cater to a wide range of tastes, and we're always 
open to feedback. Would you like to share your thoughts on the pizza with 
pineapple?"
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Apache Beam for Async LLM flows
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Two Ways to Approach The Problem

1. On-Worker Inference

2. Remote Inference
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On-Worker Inference
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RunInference
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Worker Considerations

● LLMs are big models
○ Workers will need sufficient memory to load and serve the models
○ GPUs generally provide better performance for inference

● Beam Python workers can run multiple copies of the worker harness on a 
single machine

○ How do we avoid OOM errors with these big models without enforcing one worker harness 
instance per machine?
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Model Loading

● Implement the share_model_across_processes() method in the model 
handler

○ Or pass the large_model parameter to one of the existing RunInference model handlers
● Enforces loading the model once per worker instead of per process
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Model Staging

● Another consideration: where is the model staged before runtime?
● Loading externally

○ No extra work beyond pulling the model from a source
○ Can incur a lot of network traffic and significant loading times

● Packaging the model into a custom worker container
○ All required files are present in the worker at startup, avoiding network use 

■ Essential if workers cannot have public IPs for security purposes
○ Container sizes are big
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Developement considerations

1. Build out the LLM calls first with its own Unit Tests
2. Use  the DirectRunner along with a GPU enabled host
3. When using local mode use containers

a. Create a docker container with the model
b. Create a nother docker image that used the first as base and hosts your pipeline code
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Gemma Model 
Handler (KerasNLP)

Model Loading
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def __init__(

        self,

        model_name: str = "",

    ):

        self._model_name = model_name

        self._env_vars = {}

def share_model_across_processes(self)  -> bool:

        return True

def load_model(self) -> GemmaCausalLM:

        return keras_nlp.models.GemmaCausalLM.from_preset(self._model_name)



Gemma Model 
Handler (KerasNLP)

Run Inference
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def run_inference(

        self,

        batch: Sequence[str],

        model: GemmaCausalLM,

        inference_args: Optional[Dict[str, Any]] = None

    ) -> Iterable[PredictionResult]:

        predictions = []

        for one_text in batch:

            result = model.generate(one_text, max_length=1024)

            predictions.append(result)

        return utils._convert_to_result(batch, predictions, self._model_name)



Gemma Model 
Handler (KerasNLP)

Processing Flow
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Gemma Model 
Handler (KerasNLP)

Example Prompt Template

21

prompt_template = """

<prompt>

Provide the results of doing these two tasks on the chat history provided 

below for the user {}

task 1 : assess if the tone is happy = 1 , neutral = 0 or unhappy = -1

task 2 : summarize the text with a maximum of 512 characters

Return the answer as a JSON string with fields [sentiment, summary] do NOT 

explain your answer

@@@{}@@@

<answer>

"""

?



Apache Beam for Async LLM flows
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Remote Inference
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Why Use Remote Inference?

● Want to use a larger model for the business needs
● Restrictions on available worker hardware
● Concerns about load times/worker container sizes
● Want to use an already existing service
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Adapting RunInference for Remote Calls

● Model loading becomes a lightweight process
○ Can do some sort of sanity checking that the remote service being called exists and any 

arguments are valid
● Inputs have to be formatted to be sent over the wire
● Errors from the external service have to be handled
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Being a Good Client

● Understanding and respecting HTTP error codes when returned is 
essential to keeping your pipeline running cleanly

○ Common error to consider: HTTP 429: Too Many Requests
● Mechanically, the DoFn needs to know when to retry the request and when 

an error is unrecoverable
● Respecting 429 errors and backing off will allow the pipeline to continue 

once the external service can handle traffic again
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Vertex AI Model 
Handler

Model Loading

27

def load_model(self) -> aiplatform.Endpoint:

    """Loads the Endpoint object used to build and send prediction request to

    Vertex AI.

    """

    # Check to make sure the endpoint is still active since pipeline

    # construction time

    ep = self._retrieve_endpoint(

        self.endpoint_name, self.location, self.is_private)

    return ep

VertexAIModelHandler



Vertex AI Model 
Handler

Model Loading
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def _retrieve_endpoint(

     self, endpoint_id: str, location: str,

     is_private: bool) -> aiplatform.Endpoint:

   if is_private:

     endpoint: aiplatform.Endpoint = aiplatform.PrivateEndpoint(

         endpoint_name=endpoint_id, location=location)

     LOGGER.debug("Treating endpoint %s as private", endpoint_id)

   else:

     endpoint = aiplatform.Endpoint(

         endpoint_name=endpoint_id, location=location)

     LOGGER.debug("Treating endpoint %s as public", endpoint_id)

   try:

     mod_list = endpoint.list_models()

   except Exception as e:

     raise ValueError(

         "Failed to contact endpoint %s, got exception: %s", endpoint_id, e)

   if len(mod_list) == 0:

     raise ValueError("Endpoint %s has no models deployed to it.",   

   endpoint_id)

   return endpoint



Vertex AI Model 
Handler

Inference Calls
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def run_inference(

      self,

      batch: Sequence[Any],

      model: aiplatform.Endpoint,

      inference_args: Optional[Dict[str, Any]] = None

  ) -> Iterable[PredictionResult]:

    # Endpoint.predict returns a Prediction type with the prediction values

    # along with model metadata

    prediction = self.get_request(

        batch, model, throttle_delay_secs=5, inference_args=inference_args)

    return utils._convert_to_result(

        batch, prediction.predictions, prediction.deployed_model_id)



Vertex AI Model 
Handler

Request-Response Loop
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@retry.with_exponential_backoff(

      num_retries=5, retry_filter=_retry_on_appropriate_gcp_error)

def get_request(

      self,

      batch: Sequence[Any],

      model: aiplatform.Endpoint,

      throttle_delay_secs: int,

      inference_args: Optional[Dict[str, Any]]):

    while self.throttler.throttle_request(time.time() * MSEC_TO_SEC):

      time.sleep(throttle_delay_secs)

      self.throttled_secs.inc(throttle_delay_secs)

    try:

      req_time = time.time()

      prediction = model.predict(

          instances=list(batch), parameters=inference_args)

      self.throttler.successful_request(req_time * MSEC_TO_SEC)

      return prediction

    except TooManyRequests as e:

      LOGGER.warning("request was limited by the service with code %i", e.code)

      raise

    except Exception as e:

      LOGGER.error("unexpected exception raised as part of request, got %s", e)

      raise



A Confession

● These techniques and design considerations apply for any large model 
deployed in a Beam pipeline, not just LLMs!

● Managing your model effectively (where the model is being loaded from, 
the number of copies, handling remote inference calls) is key to building 
the most effective pipeline
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Thank you!
Questions?

LinkedIn - 
linkedin.com/in/jrmccluskey

linkedin.com/in/rezarokni

http://linkedin.com/in/jrmccluskey
http://www.linkedin.com/in/rezarokni

