
September 4-5, 2024

Sunnyvale, CA. USA

Using LLMs with Beam 
and RunInference

Reza Rokni
Jack R. McCluskey



I also have a dog.

Kenna would be upset if she didn’t get 
a mention here.

2

Jack has



Why Use an LLM in a Beam Pipeline?

● LLMs are versatile models that can handle a variety of tasks
● Particularly excel with unstructured text input

○ Sentiment analysis
○ Summerization 

● Prompt engineering and model tuning can adapt these models for data 
processing workloads relatively well

3



Working through an example 

4



A users chat history

Chat ID : 4116

user_id 221: 

Hay I am really annoyed that your menu includes a pizza with pineapple on it!

user_id 331: 

Sorry to hear that , but pineapple is nice on pizza

user_id 221: 

What a terrible thing to say! Its never ok, so unhappy right now!

5



Prompt the model

prompt_template = """

<prompt>

Provide the results of doing these two tasks on the chat history provided below for the user {}

task 1 : assess if the tone is happy = 1 , neutral = 0 or angry = -1

task 2 : summarize the text with a maximum of 512 characters

Output the results as a json with fields [sentiment, summary]

@@@{}@@@

<answer>

"""

6JSON



Analyse the reponse

{

"sentiment": 

-1,

"summary": 

"User 221 is very unhappy about the presence of pineapple on pizza."

}

7



Create a respone

8

Sentiment 
Analysis

Create 
Response

Summarize



Assist our support staff

Prompt: 

"Generate an apology response for the user in this chat text: {}"

Response:

"I understand that you're upset about the pineapple pizza. It's a very personal 
preference, and I apologize that it might have caused you some frustration. We 
strive to offer a diverse menu to cater to a wide range of tastes, and we're always 
open to feedback. Would you like to share your thoughts on the pizza with 
pineapple?"

9



Apache Beam for Async LLM flows

10

Gemma

Pub/sub Create KV Sentiment 
Analysis

BigQuery

Write

Create 
Response

Summarize

Pub/sub

Write

Gemma

Gemma / Gemini

On-Worker Inference / Remote Inference



Two Ways to Approach The Problem

1. On-Worker Inference

2. Remote Inference

11



On-Worker Inference

12



RunInference

13



Worker Considerations

● LLMs are big models
○ Workers will need sufficient memory to load and serve the models
○ GPUs generally provide better performance for inference

● Beam Python workers can run multiple copies of the worker harness on a 
single machine

○ How do we avoid OOM errors with these big models without enforcing one worker harness 
instance per machine?

14



Model Loading

● Implement the share_model_across_processes() method in the model 
handler

○ Or pass the large_model parameter to one of the existing RunInference model handlers
● Enforces loading the model once per worker instead of per process

15



Model Staging

● Another consideration: where is the model staged before runtime?
● Loading externally

○ No extra work beyond pulling the model from a source
○ Can incur a lot of network traffic and significant loading times

● Packaging the model into a custom worker container
○ All required files are present in the worker at startup, avoiding network use 

■ Essential if workers cannot have public IPs for security purposes
○ Container sizes are big

16



Developement considerations

1. Build out the LLM calls first with its own Unit Tests
2. Use  the DirectRunner along with a GPU enabled host
3. When using local mode use containers

a. Create a docker container with the model
b. Create a nother docker image that used the first as base and hosts your pipeline code

17



Gemma Model 
Handler (KerasNLP)

Model Loading

18

def __init__(

        self,

        model_name: str = "",

    ):

        self._model_name = model_name

        self._env_vars = {}

def share_model_across_processes(self)  -> bool:

        return True

def load_model(self) -> GemmaCausalLM:

        return keras_nlp.models.GemmaCausalLM.from_preset(self._model_name)



Gemma Model 
Handler (KerasNLP)

Run Inference

19

def run_inference(

        self,

        batch: Sequence[str],

        model: GemmaCausalLM,

        inference_args: Optional[Dict[str, Any]] = None

    ) -> Iterable[PredictionResult]:

        predictions = []

        for one_text in batch:

            result = model.generate(one_text, max_length=1024)

            predictions.append(result)

        return utils._convert_to_result(batch, predictions, self._model_name)



Gemma Model 
Handler (KerasNLP)

Processing Flow

20

Read Input

Place into  
   prompt

Run Inference

Post-Processing



Gemma Model 
Handler (KerasNLP)

Example Prompt Template

21

prompt_template = """

<prompt>

Provide the results of doing these two tasks on the chat history provided 

below for the user {}

task 1 : assess if the tone is happy = 1 , neutral = 0 or unhappy = -1

task 2 : summarize the text with a maximum of 512 characters

Return the answer as a JSON string with fields [sentiment, summary] do NOT 

explain your answer

@@@{}@@@

<answer>

"""

?



Apache Beam for Async LLM flows

22

RunInference
Gemma

Pub/sub Create KV Sentiment 
Analysis

BigQuery

Write

Create 
Response

Summarize

Pub/sub

Write

RunInference
Gemma

RunInference 
Gemma / Gemini

On-Worker Inference / Remote Inference



Remote Inference

23



Why Use Remote Inference?

● Want to use a larger model for the business needs
● Restrictions on available worker hardware
● Concerns about load times/worker container sizes
● Want to use an already existing service

24



Adapting RunInference for Remote Calls

● Model loading becomes a lightweight process
○ Can do some sort of sanity checking that the remote service being called exists and any 

arguments are valid
● Inputs have to be formatted to be sent over the wire
● Errors from the external service have to be handled

25



Being a Good Client

● Understanding and respecting HTTP error codes when returned is 
essential to keeping your pipeline running cleanly

○ Common error to consider: HTTP 429: Too Many Requests
● Mechanically, the DoFn needs to know when to retry the request and when 

an error is unrecoverable
● Respecting 429 errors and backing off will allow the pipeline to continue 

once the external service can handle traffic again

26



Vertex AI Model 
Handler

Model Loading

27

def load_model(self) -> aiplatform.Endpoint:

    """Loads the Endpoint object used to build and send prediction request to

    Vertex AI.

    """

    # Check to make sure the endpoint is still active since pipeline

    # construction time

    ep = self._retrieve_endpoint(

        self.endpoint_name, self.location, self.is_private)

    return ep

VertexAIModelHandler



Vertex AI Model 
Handler

Model Loading

28

def _retrieve_endpoint(

     self, endpoint_id: str, location: str,

     is_private: bool) -> aiplatform.Endpoint:

   if is_private:

     endpoint: aiplatform.Endpoint = aiplatform.PrivateEndpoint(

         endpoint_name=endpoint_id, location=location)

     LOGGER.debug("Treating endpoint %s as private", endpoint_id)

   else:

     endpoint = aiplatform.Endpoint(

         endpoint_name=endpoint_id, location=location)

     LOGGER.debug("Treating endpoint %s as public", endpoint_id)

   try:

     mod_list = endpoint.list_models()

   except Exception as e:

     raise ValueError(

         "Failed to contact endpoint %s, got exception: %s", endpoint_id, e)

   if len(mod_list) == 0:

     raise ValueError("Endpoint %s has no models deployed to it.",   

   endpoint_id)

   return endpoint



Vertex AI Model 
Handler

Inference Calls

29

def run_inference(

      self,

      batch: Sequence[Any],

      model: aiplatform.Endpoint,

      inference_args: Optional[Dict[str, Any]] = None

  ) -> Iterable[PredictionResult]:

    # Endpoint.predict returns a Prediction type with the prediction values

    # along with model metadata

    prediction = self.get_request(

        batch, model, throttle_delay_secs=5, inference_args=inference_args)

    return utils._convert_to_result(

        batch, prediction.predictions, prediction.deployed_model_id)



Vertex AI Model 
Handler

Request-Response Loop

30

@retry.with_exponential_backoff(

      num_retries=5, retry_filter=_retry_on_appropriate_gcp_error)

def get_request(

      self,

      batch: Sequence[Any],

      model: aiplatform.Endpoint,

      throttle_delay_secs: int,

      inference_args: Optional[Dict[str, Any]]):

    while self.throttler.throttle_request(time.time() * MSEC_TO_SEC):

      time.sleep(throttle_delay_secs)

      self.throttled_secs.inc(throttle_delay_secs)

    try:

      req_time = time.time()

      prediction = model.predict(

          instances=list(batch), parameters=inference_args)

      self.throttler.successful_request(req_time * MSEC_TO_SEC)

      return prediction

    except TooManyRequests as e:

      LOGGER.warning("request was limited by the service with code %i", e.code)

      raise

    except Exception as e:

      LOGGER.error("unexpected exception raised as part of request, got %s", e)

      raise



A Confession

● These techniques and design considerations apply for any large model 
deployed in a Beam pipeline, not just LLMs!

● Managing your model effectively (where the model is being loaded from, 
the number of copies, handling remote inference calls) is key to building 
the most effective pipeline

31



32

Thank you!
Questions?

LinkedIn - 
linkedin.com/in/jrmccluskey

linkedin.com/in/rezarokni

http://linkedin.com/in/jrmccluskey
http://www.linkedin.com/in/rezarokni

