
NYC 2025

A Deep Dive into Beam
Python Type Hinting

Jack R. McCluskey

SWE @ Google

BEAM SUMMIT NYC 2025#

Agenda

● Background
○ Static vs. Runtime Type Checking
○ Type Compatibility
○ Why Types Matter to Beam

● The Infrastructure
○ Applying Type Hints
○ Internal Type Representations
○ Processing and Compatibility

● “Trivial” Inference

BEAM SUMMIT NYC 2025#

About Me

● Graduated from UNC
Chapel Hill in 2020

● Joined Google in July of
2020 through the
Engineering Residency
Program

● Started working on Google
Cloud Dataflow in June of
2021

BEAM SUMMIT NYC 2025#

Static Type Checking Runtime Type Checking

● Static analysis of written
code, usually in an IDE

● Sanity checks usage of an
object based on its hinted
type

● Does not necessarily reflect
realities at runtime

● Programmatically checking
type compatibility during
code execution

● Useful when path of
inputs/outputs is not
necessarily static (like in a
Beam pipeline)

● Still not necessarily
reflective of actual types at
execution

BEAM SUMMIT NYC 2025#

Type Compatibility

● Python is duck-typed
● Instead of direct inheritance, compatibility is based on a subtype

relationship
● A type is considered a subtype of a parent type if:

○ The subtype has valid attribute values for the parent type
○ The subtype implements the methods of the parent type

● Special case: the Any type is compatible with every type and every
type is compatible with Any

BEAM SUMMIT NYC 2025#

Why Types Matter to Beam

● Static checking gives us sanity checks within DoFn definitions
○ e.g. assuming the input PCollection is of the type you expect, your IDE will warn

you if you try to access something on an object in a way that isn’t guaranteed to
be there

● Runtime checking gives us sanity checks between transforms in a
pipeline graph

● Beam Python also uses type hints to select more efficient coders

BEAM SUMMIT NYC 2025#

Applying Type Hints

● Beam Python allows transforms to be type annotated in a few
different ways:

○ PEP 484 Function Annotations
○ Method Chaining in Pipeline Definitions
○ Decorators

BEAM SUMMIT NYC 2025#

Function Annotation

class WordExtractingDoFn(beam.DoFn):
 def process(self, element: str) -> str:
 return re.findall(r'[\w\']+', element, re.UNICODE)

BEAM SUMMIT NYC 2025#

Method Chaining

class WordExtractingDoFn(beam.DoFn):
 def process(self, element):
 return re.findall(r'[\w\']+', element, re.UNICODE)

...

counts = (
 lines
 | 'Split' >> (beam.ParDo(WordExtractingDoFn()).with_output_types(str))
 | 'PairWithOne' >> beam.Map(lambda x: (x, 1))
 | 'GroupAndSum' >> beam.CombinePerKey(sum)

BEAM SUMMIT NYC 2025#

Function Decorators

@typehints.with_input_types(str)
@typehints.with_output_types(str)
class WordExtractingDoFn(beam.DoFn):
 def process(self, element):
 return re.findall(r'[\w\']+', element, re.UNICODE)

BEAM SUMMIT NYC 2025#

Internal Type Representations

● Beam uses internal type representations of common container
types rather than the Python-native versions

● Representations inherit from one of two base classes
○ TypeConstraint

■ Implement a _consistent_with_check() method that contains logic for
determining if a given type is consistent with the constraint

○ CompositeTypeHint
■ Function as a TypeConstraint factory for more complex type representations
■ Accept types via __getitem__() and parameterizes a TypeConstraint with that

argument
■ Oftentimes contains a nested definition of a TypeConstraint for specific use

BEAM SUMMIT NYC 2025#

Internal Type Representations

class DictConstraint(TypeConstraint):
 def __init__(self, key_type, value_type):
 self.key_type = normalize(key_type)
 self.value_type = normalize(value_type)

def _consistent_with_check_(self, sub):
 return (
 isinstance(sub, self.__class__) and
 is_consistent_with(sub.key_type, self.key_type) and
 is_consistent_with(sub.value_type, self.value_type))

BEAM SUMMIT NYC 2025#

Internal Type Representations

class DictHint(CompositeTypeHint):
 def __getitem__(self, type_params):
 # Type param must be a (k, v) pair.
 if not isinstance(type_params, tuple):
 raise TypeError(
 'Parameter to Dict type-hint must be a tuple of types: '
 'Dict[.., ..].')

 if len(type_params) != 2:
 raise TypeError(
 'Length of parameters to a Dict type-hint must be exactly 2. Passed '
 'parameters: %s, have a length of %s.' %
 (type_params, len(type_params)))

 key_type, value_type = type_params

 ...

 return self.DictConstraint(key_type, value_type)

BEAM SUMMIT NYC 2025#

Processing Types to Internal Versions

Example Matcher
def _match_is_dict(user_type):
 return _is_primitive(user_type, dict) or _safe_issubclass(user_type, dict)

Example TypeMapEntry
_TypeMapEntry(match=_match_is_dict, arity=2, beam_type=typehints.Dict)

BEAM SUMMIT NYC 2025#

Processing Types to Internal Versions

Find the first matching entry.
matched_entry = next((entry for entry in type_map if entry.match(typ)), None)
if not matched_entry:
 _LOGGER.info('Using Any for unsupported type: %s', typ)
 return typehints.Any

BEAM SUMMIT NYC 2025#

Processing Types to Internal Versions

● We process known container types into Beam-internal
representations in native_type_compatibility.py

○ Built-ins, typing module types, collections and collections.abc types are “known”
container types

● A list of named tuples defines the order in which types are checked,
a matcher function to check against a type, and the arity of that
type

○ Order in this list does matter, we want to check against specific categories first
then broaden later (e.g. a frozenset is also a set, so we should check if a type is a
frozenset first)

BEAM SUMMIT NYC 2025#

Checking Compatibility

● The actual type checking function is the is_consistent_with()
function

● Conceptually, we leverage as much information as we can before
falling back to Python’s built-in issubclass() check

BEAM SUMMIT NYC 2025#

Checking Compatibility

1

Check Common Cases

Exact matches and integer
relationships

Normalize

Coerce known types to
Beam-internal types, leave

everything else as-is

2

Check Against
TypeConstraints

Use the defined Beam-internal
compatibility functions to check

types

3

Fall Back to issubclass()

If we don’t have any
TypeConstraints, pass to

issubclass() for the final check

4

BEAM SUMMIT NYC 2025#

Checking Compatibility

def is_consistent_with(sub, base):
 if sub == base:
 return True
 if sub is int and base in (float, complex):
 return True
 if sub is float and base is complex:
 return True
 sub = normalize(sub, none_as_type=True)
 base = normalize(base, none_as_type=True)

BEAM SUMMIT NYC 2025#

Checking Compatibility

def normalize(x, none_as_type=False):
 if none_as_type and x is None:
 return type(None)
 # Convert bare builtin types to correct type hints directly
 elif x in _KNOWN_PRIMITIVE_TYPES:
 return _KNOWN_PRIMITIVE_TYPES[x]
 elif getattr(x, '__module__',
 None) in ('typing', 'collections', 'collections.abc') or getattr(
 x, '__origin__', None) in _KNOWN_PRIMITIVE_TYPES:
 beam_type = native_type_compatibility.convert_to_beam_type(x)
 if beam_type != x:
 # We were able to do the conversion.
 return beam_type
 else:
 # It might be a compatible type we don't understand.
 return Any
 return x

BEAM SUMMIT NYC 2025#

Checking Compatibility

if isinstance(sub, AnyTypeConstraint) or isinstance(base, AnyTypeConstraint):
 return True
 elif isinstance(sub, UnionConstraint):
 return all(is_consistent_with(c, base) for c in sub.union_types)
 elif isinstance(base, TypeConstraint):
 return base._consistent_with_check_(sub)
 elif isinstance(sub, RowTypeConstraint):
 return base == Row
 elif isinstance(sub, TypeConstraint):
 # Nothing but object lives above any type constraints.
 return base == object
 elif getattr(base, '__module__', None) == 're':
 return regex_consistency(sub, base)
 elif is_typing_generic(base):
 return False
 return issubclass(sub, base)

BEAM SUMMIT NYC 2025#

“Trivial” Inference

● “Trivial” is a misnomer, as the trivial inference code in Beam Python
is actually a CPython emulator

● The code emulates the underlying CPython byte code for any
untyped function (but most importantly lambdas) to determine
possible return types

BEAM SUMMIT NYC 2025#

CPython Operations

● CPython operations are similar to any sort of machine-level code
● Each instruction has an opcode, instruction size, and potential

arguments for each.
● For each opcode, interactions with the stack and potential

branches must be emulated with respect to types of potential
values, but not the values themselves

BEAM SUMMIT NYC 2025#

The Emulation Loop

● Create initial objects to track emulated state
○ FrameState object for things like the stack, keyword names, etc.
○ Sets of returned and yielded types

● Extract the bytecode from the function using the dis package
○ Organize the individual instructions into a dictionary, with the byte offset as the

key and the actual instruction as the value
● Start to loop over the program, emulating each instruction that

directly impacts the state we track
○ Some operations like CACHEs are no-ops for our purposes

BEAM SUMMIT NYC 2025#

Branching

● Some CPython operations introduce logical branches
○ JMP_IF_TRUE, POP_IF_FALSE, etc.

● To cover varying return types from these branches, we have to
evaluate both branches

○ Deep copy the current state of the frame (the “do not branch” case) and save it in
a list of states

○ Modify the active frame based on the operation (the “branch” case)
○ Emulate the active frame until completion
○ Retrieve the saved state and resume emulation

BEAM SUMMIT NYC 2025#

Further Reading

● Doc overview of this content with code references
○ https://s.apache.org/beam-python-type-hinting-overview

NYC 2025

QUESTIONS?
jrmccluskey@apache.org

@jrmccluskey.com on BlueSky
jrmccluskey on Linkedin

jrmccluskey on Github

Jack R. McCluskey

