A Deep Dive into Beam
Python Type Hinting

Jack R. McCluskey
SWE @ Google

e Background
o Static vs. Runtime Type Checking
o Type Compatibility
o Why Types Matter to Beam
e The Infrastructure
o Applying Type Hints

o Internal Type Representations
o Processing and Compatibility

e “Trivial" Inference

e Graduated from UNC
Chapel Hill in 2020

e Joined Google in July of
2020 through the
Engineering Residency
Program

e Started working on Google

Cloud Dataflow in June of
2021

M

BEAM SUMMIT NYC 2025

Static Type Checking

Static analysis of written
code, usually in an IDE
Sanity checks usage of an
object based on its hinted
type

Does not necessarily reflect
realities ot runtime

Runtime Type Checking

Programmatically checking
type compatibility during
code execution

Useful when path of
inputs/outputs is not
necessarily static (like in a
Beam pipeline)

Still not necessarily
reflective of actual types at
execution

Type Compatibility

Python is duck-typed
Instead of direct inheritance, compatibility is based on a subtype

relationship

A type is considered a subtype of a parent type if:
o The subtype has valid attribute values for the parent type
o The subtype implements the methods of the parent type

Special case: the Any type is compatible with every type and every
type is compatible with Any

Why Types Matter to Beam

Static checking gives us sanity checks within DoFn definitions

o e.9.assuming the input PCollection is of the type you expect, your IDE will warn
you if you try to access something on an object in a way that isn't guaranteed to
be there

Runtime checking gives us sanity checks between transforms in a

pipeline graph
Beom Python also uses type hints to select more efficient coders

Applying Type Hints

e Beam Python allows transforms to be type annotated in a few

different ways:
o PEP 484 Function Annotations
o Method Chaining in Pipeline Definitions
o Decorators

Function Annotation

class WordExtractingDoFn(beam.DoFn):
def process(self, element: str) -> str:
return re.findall(r'[\w\']+', element, re.UNICODE)

Method Chaining

class WordExtractingDoFn(beam.DoFn):
def process(self, element):
return re.findall(r'[\w\']+', element, re.UNICODE)

counts = (
lines
| 'Split' >> (beam.ParDo(WordExtractingDoFn()).with_output_types(str))
| 'PairWithOne' >> beam.Map(lambda x: (x, 1))
| 'GroupAndSum' >> beam.CombinePerKey(sum)

Function Decorators

@typehints.with_input_types(str)
@typehints.with_output_types(str)
class WordExtractingDoFn(beam.DoFn):

def process(self, element):
return re.findall(r'[\w\']+', element, re.UNICODE)

Internal Type Representations

Beaom uses internal type representations of common container
types rather than the Python-native versions

Representations inherit from one of two base classes
o TypeConstraint
m Implement a _consistent_with_check() method that contains logic for
determining if a given type is consistent with the constraint
o CompositelypeHint
m Function as a TypeConstraint factory for more complex type representations

m Accept types via _getitem__() and parameterizes a TypeConstraint with that
argument

Oftentimes contains a nested definition of a TypeConstraint for specific use

Internal Type Representations

class DictConstraint(TypeConstraint):
def __init__(self, key_type, value_type):
self.key_type = normalize(key_type)
self.value_type = normalize(value_type)

def _consistent_with_check_(self, sub):
return (
isinstance(sub, self.__class__) and
is_consistent_with(sub.key_type, self.key_type) and
is_consistent_with(sub.value_type, self.value_type))

Internal Type Representations

class DictHint(CompositeTypeHint):
def __getitem__(self, type_params):
Type param must be a (k, v) pair.
if not isinstance(type_params, tuple):
raise TypeError(
'Parameter to Dict type-hint must be a tuple of types: '
'‘Dict[.., ..].")

if len(type_params) != 2:
raise TypeError(
'Length of parameters to a Dict type-hint must be exactly 2. Passed '
'parameters: %s, have a length of %s.' %
(type_params, len(type_params)))

key_type, value_type = type_params

return self.DictConstraint(key_type, value_type)

Processing Types to Internal Versions

Example Matcher
def _match_is_dict(user_type):
return _is_primitive(user_type, dict) or _safe_issubclass(user_type, dict)

Example TypeMapEntry
_TypeMapEntry(match=_match_is_dict, arity=2, beam_type=typehints.Dict)

Processing Types to Internal Versions

Find the first matching entry.
matched_entry = next((entry for entry in type_map if entry.match(typ)), None)
if not matched_entry:

_LOGGER.info('Using Any for unsupported type: %s', typ)

return typehints.Any

Processing Types to Internal Versions

e We process known container types into Beam-internal

representations in native_type_compatibility.py

o Built-ins, typing module types, collections and collections.abc types are “known”
container types

A list of named tuples defines the order in which types are checked,
a matcher function to check against a type, and the arity of that
type

o Order in this list does matter, we want to check against specific categories first

then broaden later (e.g. a frozenset is also a set, so we should check if a typeis a
frozenset first)

Checking Compatibility

The actual type checking function is the is_consistent_with()
function

Conceptually, we leverage as much information as we can before
falling back to Python's built-in issubclass() check

Checking Compatibility

O—-—0 -0 -0

Check Against
TypeConstraints

Check Common Cases Normalize Fall Back to issubclass()

Exact matches and integer Coerce known types to Use the defined Beam-internal If we don’t have any
relationships Beam-internal types, leave compatibility functions to check TypeConstraints, pass to
everything else as-is types issubclass() for the final check

Checking Compatibility

def is_consistent_with(sub, base):

if sub == base:
return True

if sub is int and base in (float, complex):
return True

if sub is float and base is complex:
return True

sub = normalize(sub, none_as_type=True)

base = normalize(base, none_as_type=True)

Checking Compatibility

def normalize(x, none_as_type=False):
if none_as_type and x is None:
return type(None)
Convert bare builtin types to correct type hints directly
elif x in _KNOWN_PRIMITIVE_TYPES:
return _KNOWN_PRIMITIVE_TYPES[x]
elif getattr(x, '__module__",
None) in ('typing', 'collections', 'collections.abc') or getattr(
X, '__origin__", None) in _KNOWN_PRIMITIVE_TYPES:
beam_type = native_type_compatibility.convert_to_beam_type(x)
if beam_type !'= x:
We were able to do the conversion.
return beam_type
else:
It might be a compatible type we don't understand.
return Any
return x

Checking Compatibility

if isinstance(sub, AnyTypeConstraint) or isinstance(base, AnyTypeConstraint):
return True
elif isinstance(sub, UnionConstraint):
return all(is_consistent_with(c, base) for c in sub.union_types)
elif isinstance(base, TypeConstraint):
return base._consistent_with_check_(sub)
elif isinstance(sub, RowTypeConstraint):
return base == Row
elif isinstance(sub, TypeConstraint):
Nothing but object lives above any type constraints.
return base == object
elif getattr(base, '__module__', None) == 're’
return regex_consistency(sub, base)
elif is_typing_generic(base):
return False
return issubclass(sub, base)

“Trivial" Inference

“Trivial" is a misnomer, as the trivial inference code in Beam Python
is actually a CPython emulator

e The code emulates the underlying CPython byte code for any
untyped function (but most importantly lombdas) to determine
possible return types

CPython Operations

CPython operations are similar to any sort of machine-level code
Each instruction has an opcode, instruction size, and potential
arguments for each.

For each opcode, interactions with the stack and potential
branches must be emulated with respect to types of potential

values, but not the values themselves

The Emulation Loop

Create initial objects to track emulated state
o FrameState object for things like the stack, keyword names, etc.
o Sets of returned and yielded types

Extract the bytecode from the function using the dis package

o Organize the individual instructions into a dictionary, with the byte offset as the
key and the actual instruction as the value

Start to loop over the program, emulating each instruction that

directly impacts the state we track
o Some operations like CACHESs are no-ops for our purposes

Some CPython operations introduce logical branches
o JMPIF.TRUE, POPIFFALSE, etc.

To cover varying return types from these branches, we have to

evaluate both branches
Deep copy the current state of the frame (the “do not branch® case) and save it in

a list of states

Modify the active frame based on the operation (the “oranch” case)
Emulate the active frame until completion

Retrieve the saved state and resume emulation

Further Reading

e Doc overview of this content with code references

O https://s.apache.org/beam-python-type-hinting-overview

Jack R. McCluskey

jrmccluskey@apache.org
@jrmccluskey.com on BlueSky
jrmccluskey on Linkedin
jrmccluskey on Github

3=AM

NYC 2025

