Architecting Real-Time Blockchain

Intelligence with Apache Beam and
Apache Kafka

Vijay Shekhawat,
Staff Software Engineer, TRM Labs

About TRM Labs

TRM Labs provide blockchain
intelligence tools to help financial
institutions, crypto businesses, and
government agencies detect and
investigate crypto-related financial
crime ond fraud.

TRM'’s Analytics platform processes

petabytes of blockchain data
across 60+ blockchains and
answers hundreds of concurrent
queries.

Real-Time Blockchain Intelligence That Stops Crime

Exploring Streom Processing Architectures

Why Apache Beam + Dataflow as the stream processing engine
Design principles & Performance optimizations

Multi-cloud stream processing with Apache Beam

Practical Recommendations for Adopting Stream Processing

Real-Time Blockchain Intelligence That Stops Crime

Follow the money in real time — across wallets, chains, and
cash-out points

Critical insights that enable investigators to stop financial crime
before it's too late

Always-on coverage: blockchain activity never sleeps — 24/7, 365

days a year
Processing tens of thousands of blockchain events per second
across 60+ chains

Built for speed, scale, and reliability — because real people are
counting on it

Exploring Stream Processing Architectures

A way manage ingestion, processing, and storage of large-scale
data

At TRM, we evaluated:

o Lambda architecture - supports batch + real-time processing
o Kappa architecture - focuses on real-time stream processing

Each model has distinct strengths and trade-offs depending on
the workload

Lambda Architecture

Dual-layer approach: Batch
and Stream.

Robust, fault-tolerant,
suitoble for complex tasks.
Complexity in maintaining
two systems.

Kappa Architecture

Single stream-processing
layer.

Simpler, easier maintenance.
Less efficient for complex
processing.

Why Apache Beam + Datoflow as the stream processing engine

1. Define the evaluation criteria
Performance & Scalability

Maintenance Overhead

System Compatibility

Cost Efficiency

2. Know your strengths and weaknesses

o Team Expertise

o Future goals
3. Compare options
Apache Beam
Spark Streaming
Apache Flink
Kafka Streams

(@)
(@)
(@)
(@)

(@)
(@)
(@)
(@)

Why Apache Beam + Datoflow as the stream processing engine

Criteria Apache Beam with GCP Dataflow Spark Structured Streaming Kafka Streams Apache Flink
Performance A A B A+
Scalability A+

Maintenance Overhead A+

Compatibility A+

Cost B+

Design Principles for Realtime
stream processing at TRM Labs

Design Principle - Separate Computational From Write Stages

Writer Pipeline

Citus Blue

Computation Pipeline .

: '\ Intermediate Kafka ! :
Source Kafka { Stage Apache Beam (Google clound dataflow runner) '

Citus Green

! Apache Beam (Google clound dataflow runner)

Design Principle - Avoid Streaming joins

e Initial Challenges with V1.

o Managing Out-of-Order events
across multiple streams.

o Strategic windowing,
watermarks, triggers for
accurate data joins.

e Evolution:

Moved from stream joins to a
Unified Stream Approach.
Achieved 100% data accuracy.
Considered granularity, data
constituents, Kafka topic
partition optimization.

Design Principle - Layered approach

e Layer 1: Pipeline Configuration

o Batched JDBC writes.

o Buffering via Apache Beam windows for
deduplication. Intermediate Kafka

e Layer 2: Network Configuration Stige

o Deployed database and Dataflow VMs in the
same region for latency optimization.

o Optimized database statement and idle
timeouts and Fine-tuned network and JDBC
socket timeouts.

e Layer 3: Database Configuration

o Connection pooling (HikariCP).

o Optimized Table structure

o Strategic use of PostgreSQL features (ON
CONFLICT, Unlogged Tables).

Realtime writer Pipeline

Design Principle - Write Stage

Intermediate Kafka
e Layer 1: Pipeline Configuration Stage

o Batched JDBC writes.
o Buffering via Apache Beam windows for
deduplication.
e Layer 2: Network Configuration

Realtime writer Pipeline

o Deployed database and Dataflow VMs in
the same region for latency optimization.

o Optimized database statement and idle
timeouts and Fine-tuned network and
JDBC socket timeouts.

e Layer 3: Database Configuration

o Connection pooling (HikariCP).

o Optimized Table structure

o Strategic use of PostgreSQL features (ON
CONFLICT, Unlogged Tables).

Dataflow Pipeline

Hikari Connection Pool

JDBC API

l

Thin(Type &) Driver

—-—

Native Protocol

Design Principle - Write Stage

e Layer 1: Pipeline Configuration

o Batched JDBC writes.

o Buffering via Apache Beam windows for
deduplication.

e Layer 2: Network Configuration

o Deployed database and Dataflow VMs in the
same region for latency optimization.

o Optimized database statement and idle
timeouts and Fine-tuned network and JDBC
socket timeouts.

e Layer 3: Database Configuration

o Connection pooling (HikariCP).

o Optimized Table structure

o Strategic use of PostgreSQL features (ON
CONFLICT, Unlogged Tables).

Multi-cloud stream processing with
Apache Beam

Apache Beam Superpower - Multi-cloud & Engine Flexibility

e Beam's unified model facilitates batch/stream unification.
e Multi-cloud: Operate seamlessly between GCP and AWS.
e Minimal code changes needed to switch from GCP Dataflow to Apache Flink.

TRM Labs is Hiring

Join the fight against

Fraud and Scams
Supporting victims of investment fraud

with Massachusetts Attorney General

Fentanyl Crisis

Disrupting a prominent fentanyl vendor

with Homeland Security Investigations WWW.trm I a bS .Ccom /Ca reers

Terrorist Fighting
Tracking ISIS use of cryptocurrency

Cybercrime

Taking Down Qakbot malware with the
FBI

Hacks
Seizing $12 billion of stolen Bitcoin

Vijay Shekhawat

3=AM X vijay@trmlabs.com
NYC 2025 @ linkedin.com/in/thevijayshekhawat/

