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Agenda

● Defining the problem of Data Quality
● What can we do about it?
● What have we done about it?
● What still remains?
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Data Quality: An Analogy

To have a smooth and safe trip, 
all travelers must have:

● Identifying documents
● Boarding Pass with group
● Go through security
● Stay with their traveling 

party
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Implementation by Analogy

Other text
Physical World Machine Learning

A trip ML Pipeline

Passport Example Identifier + value of 
feature

Boarding Group Split

Population Demographics Statistics (The Shadow)

Description of traveling party Schema

Traveling Party Example

Luggage Tag DQ Features

Security Check The Prism

Check in Transformed Features

Population Entire Dataset (The Sun)

Sub-population Subset (The beam)
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Data Quality Challenges in ML Pipelines

● The data is in the pipeline.  We are outside the pipeline.
● The data can be very large and messy
● Variety of formats to deal with at different stages
● Hard to see connection between data and its effect on models
● Good data is hard to find: > 85% of the effort/code is not actually 

machine learning, it is data processing
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How Beam can help

Beam speaks a thousand formats.  No data is outside of Beam’s reach.

Beam + TFX reduce the surface area of skills required to do 
professional grade machine learning.

Beam, with its ability to execute user defined functions (UDFs) on behalf 
of the user, can reduce the burden of data processing at scale while 
abstracting the complexity away.

TFX, with its component architecture, can manage the end-to-end trip, 
using Beam wherever distributed computation is appropriate.

ML Metadata helps us open up the pipeline, without spilling a drop of 
data.  Squeaky clean!
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How Beam Can Help with Data Quality for ML

Step How Beam Helps Specifics

Pre-Ingestion Determine Schema for Data Schema Generator

Data Splitting & Identification Deterministic Data Splitting at 
Scale

PartitionDoFn

Data Ingestion Encoding Data at scale ExampleGen (Standard)

Data Profile Statistics StatisticsGen (Standard)

Data Exploration Produce JSON from TFRecord JSONSampler

Non-graph intended feature 
injection

Apply Arbitrary Python UDFs PreTransform

Filter Remove examples which do not 
meet DQ requirements

FilterUDF
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Schema Generation

Schema aware PCollections simplify 
data processing and quality 
greatly.

Computing a schema, using all of 
the data, can be computationally 
difficult

With beam python sdk, you can 
process each element as a string, 
and use functions such as 
yaml.safe_load(element) to 
determine type of element

You can then compute a rough 
schema that you can tune
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Data Splitting & IdentificationFor non time series data, you can 
do deterministic splitting using 
hashing algorithms if applicable.

For temporal data, you can use 
spans in ExampleGen in TFX

Or, you can use beam.Partition

You can use a DoFn if you want to 
add in other information, such as a 
deterministic UUID, missing feature 
indicators, split information

Ideally, the uuid integrates split 
information.

Here we do beam based 
approximate quantiles unless user 
provides split point. Use a compiled 
language  like Go to determine split 
point under a minute.  



BEAM SUMMIT NYC 2025# 

Data Exploration: The Shadow
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Data Exploration: The Beam

The statistics are the shadow, and the 
talk is about data quality “in” ML 
pipelines.  We have to go inside the 
pipeline.

This means going from 
tf.train.Examples to JSON or similar, 
and possibly sampling.

We can use the schema computed in 
the TFX pipeline to create a 
NamedTuple object dynamically, and 
plug in to Schema Aware PCollections.  
This is the heart of the Executor in 
JSONSampler

The json versions come from 
tf.train.Examples, and are fully tracked 
from an ML Metadata perspective
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Data Exploration: The Beam and the Shadow
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Data Exploration: Designing the PrismWe inject data quality indicators,
_dq features, by interacting with 
statistics & sample data
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Data PreTransform: Implementing the Prism

PreTransform takes in examples, a schema, and a module file.  The module file contains our data quality contracts we got from 
the last step. It transforms the examples to native python equivalents using the schema, applies the provided function, and 
re-packs them back to TFRecords. We place StatisticsGen, SchemaGen, and JSONSampler to further verify data quality 
downstream. Because it can do arbitrary python functions, we could have created a polygon and evaluated data quality 
geographically (e.g. avoid slivers of the river that may not be possible using ranges)
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Data PreTransform Scaling: Parallel Beams

Surprisingly, although there are no matrix or gradient operations, PreTransform processes allocate memory on the GPUs, and 
show a lot of parallelism (44 pids in nvidia-smi pmon). This likely has to do with the unpacking and packing of tf.train.Examples 
by the workers using beam.  These workers execute work on both GPUs and use all CPU cores. Twenty five million examples 
processed in ~57 minutes, ~0.438 million examples/minute -> 7.3K data quality feature injections per second. It does as many in 
a few seconds as we are capable of visualizing. 20x wall clock performance on DirectRunner.
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Data Filtration: Beams Filtered through Prism

FilterUDF takes in examples, a schema, statistics (currently unused), and a module file.  We 
construct our _dq indicators from the schema, which results in only data that passes all of 
our data quality checks to be passed through to the next stage.
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Exploring Filtered Data
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Downstream Pipeline Components

Now that our data is filtered, we can enrich (feature engineer) it, with tf.Transform.

We can place our JSONSampler to receive JSON versions of TFTransform’ed Examples.

As features are sometimes higher dimensional, we would need to enhance our conversion 
process (currently only python primitives).

Since we have UUIDs and split information, we can have fine grained tracing of the impact 
of each example on the training process (e.g. Analyze BulkInferrer protocol buffers, re-inject 
back into visualization after sampling).

Models trained on the filtered data have lower validation loss (both train and val are 
filtered) than those on unfiltered data (no filtering on either split)

ML Metadata is what allows us to open up the pipeline, and re-seal it back together. An 
end-to-end hermetically sealed pipeline is not optimized for data quality, it is optimized for 
scaling and reproducibility.
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Transformed Statistics
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How can we make it better?

Step How Beam Helps How we can improve?

Pre-Ingestion Determine Schema for Data Utility code for schema generation, integrate 
uuids better
Use more scalable runner than DirectRunner 
(overall)

Data Splitting & Identification Deterministic Data Splitting at Scale Manage split point in metadata, splits in data
Generate UUID post-split
Component for temporal data (not just 
managing split points, also sequences/time 
series)

Data Exploration Produce JSON from TFRecord Multi-dimensional support (temporal, geo)
Figure out scaling visualization (e.g. infinite 
zoom using “James Webb” feature.)

Non-graph intended feature injection Apply Arbitrary Python UDFs Support polygon generation from 
visualization, auto generate UDF

Filter Remove examples which do not meet DQ 
requirements

Store filtered data as a managed artifact, 
filter individual examples

Post Transform Evaluator, BulkInference Integrate output into ML loop
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Demo (Time/Conditions Permitting)

Capabilities:

How can we assign passports to our data? - Windowing/UUID

How can we attach luggage tags? - Inject Data Quality Indicators

How can we filter bad data at scale? - FilterUDFs

How can we manage the boarding process? - Data Quality Post 
Transform (Future)

How can we manage, and possibly avoid, turbulence? - 
BulkInference/Evaluator Integration (Future)



BEAM SUMMIT NYC 2025#  

● If you know Beam, you are more than halfway there for large scale machine learning.
● Follow https://github.com/tensorflow/tfx to keep up with the improvements in large scale ML.  
● Try to understand TFX component architecture for a Beam based component. Three parts: component, with 

children component spec, and executor.  I can provide book recommendations.
● Help me get these components into TFX!
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QUESTIONS?
LinkedIn: https://www.linkedin.com/in/pritam-dodeja/

Github: https://github.com/pritamdodeja

Pritam Dodeja, ML Engineer
@ Intuitive.cloud


