
NYC 2025

Data Quality in ML
Pipelines

 X >> Bad Data

BEAM SUMMIT NYC 2025#

Agenda

● Defining the problem of Data Quality
● What can we do about it?
● What have we done about it?
● What still remains?

BEAM SUMMIT NYC 2025#

Data Quality: An Analogy

To have a smooth and safe trip,
all travelers must have:

● Identifying documents
● Boarding Pass with group
● Go through security
● Stay with their traveling

party

BEAM SUMMIT NYC 2025#

Implementation by Analogy

Other text
Physical World Machine Learning

A trip ML Pipeline

Passport Example Identifier + value of
feature

Boarding Group Split

Population Demographics Statistics (The Shadow)

Description of traveling party Schema

Traveling Party Example

Luggage Tag DQ Features

Security Check The Prism

Check in Transformed Features

Population Entire Dataset (The Sun)

Sub-population Subset (The beam)

BEAM SUMMIT NYC 2025#

Data Quality Challenges in ML Pipelines

● The data is in the pipeline. We are outside the pipeline.
● The data can be very large and messy
● Variety of formats to deal with at different stages
● Hard to see connection between data and its effect on models
● Good data is hard to find: > 85% of the effort/code is not actually

machine learning, it is data processing

BEAM SUMMIT NYC 2025#

How Beam can help

Beam speaks a thousand formats. No data is outside of Beam’s reach.

Beam + TFX reduce the surface area of skills required to do
professional grade machine learning.

Beam, with its ability to execute user defined functions (UDFs) on behalf
of the user, can reduce the burden of data processing at scale while
abstracting the complexity away.

TFX, with its component architecture, can manage the end-to-end trip,
using Beam wherever distributed computation is appropriate.

ML Metadata helps us open up the pipeline, without spilling a drop of
data. Squeaky clean!

BEAM SUMMIT NYC 2025#

How Beam Can Help with Data Quality for ML

Step How Beam Helps Specifics

Pre-Ingestion Determine Schema for Data Schema Generator

Data Splitting & Identification Deterministic Data Splitting at
Scale

PartitionDoFn

Data Ingestion Encoding Data at scale ExampleGen (Standard)

Data Profile Statistics StatisticsGen (Standard)

Data Exploration Produce JSON from TFRecord JSONSampler

Non-graph intended feature
injection

Apply Arbitrary Python UDFs PreTransform

Filter Remove examples which do not
meet DQ requirements

FilterUDF

BEAM SUMMIT NYC 2025#

Schema Generation

Schema aware PCollections simplify
data processing and quality
greatly.

Computing a schema, using all of
the data, can be computationally
difficult

With beam python sdk, you can
process each element as a string,
and use functions such as
yaml.safe_load(element) to
determine type of element

You can then compute a rough
schema that you can tune

BEAM SUMMIT NYC 2025#

Data Splitting & IdentificationFor non time series data, you can
do deterministic splitting using
hashing algorithms if applicable.

For temporal data, you can use
spans in ExampleGen in TFX

Or, you can use beam.Partition

You can use a DoFn if you want to
add in other information, such as a
deterministic UUID, missing feature
indicators, split information

Ideally, the uuid integrates split
information.

Here we do beam based
approximate quantiles unless user
provides split point. Use a compiled
language like Go to determine split
point under a minute.

BEAM SUMMIT NYC 2025#

Data Exploration: The Shadow

BEAM SUMMIT NYC 2025#

Data Exploration: The Beam

The statistics are the shadow, and the
talk is about data quality “in” ML
pipelines. We have to go inside the
pipeline.

This means going from
tf.train.Examples to JSON or similar,
and possibly sampling.

We can use the schema computed in
the TFX pipeline to create a
NamedTuple object dynamically, and
plug in to Schema Aware PCollections.
This is the heart of the Executor in
JSONSampler

The json versions come from
tf.train.Examples, and are fully tracked
from an ML Metadata perspective

BEAM SUMMIT NYC 2025#

Data Exploration: The Beam and the Shadow

BEAM SUMMIT NYC 2025#

Data Exploration: Designing the PrismWe inject data quality indicators,
_dq features, by interacting with
statistics & sample data

BEAM SUMMIT NYC 2025#

Data PreTransform: Implementing the Prism

PreTransform takes in examples, a schema, and a module file. The module file contains our data quality contracts we got from
the last step. It transforms the examples to native python equivalents using the schema, applies the provided function, and
re-packs them back to TFRecords. We place StatisticsGen, SchemaGen, and JSONSampler to further verify data quality
downstream. Because it can do arbitrary python functions, we could have created a polygon and evaluated data quality
geographically (e.g. avoid slivers of the river that may not be possible using ranges)

BEAM SUMMIT NYC 2025#

Data PreTransform Scaling: Parallel Beams

Surprisingly, although there are no matrix or gradient operations, PreTransform processes allocate memory on the GPUs, and
show a lot of parallelism (44 pids in nvidia-smi pmon). This likely has to do with the unpacking and packing of tf.train.Examples
by the workers using beam. These workers execute work on both GPUs and use all CPU cores. Twenty five million examples
processed in ~57 minutes, ~0.438 million examples/minute -> 7.3K data quality feature injections per second. It does as many in
a few seconds as we are capable of visualizing. 20x wall clock performance on DirectRunner.

BEAM SUMMIT NYC 2025#

Data Filtration: Beams Filtered through Prism

FilterUDF takes in examples, a schema, statistics (currently unused), and a module file. We
construct our _dq indicators from the schema, which results in only data that passes all of
our data quality checks to be passed through to the next stage.

BEAM SUMMIT NYC 2025#

Exploring Filtered Data

BEAM SUMMIT NYC 2025#

Downstream Pipeline Components

Now that our data is filtered, we can enrich (feature engineer) it, with tf.Transform.

We can place our JSONSampler to receive JSON versions of TFTransform’ed Examples.

As features are sometimes higher dimensional, we would need to enhance our conversion
process (currently only python primitives).

Since we have UUIDs and split information, we can have fine grained tracing of the impact
of each example on the training process (e.g. Analyze BulkInferrer protocol buffers, re-inject
back into visualization after sampling).

Models trained on the filtered data have lower validation loss (both train and val are
filtered) than those on unfiltered data (no filtering on either split)

ML Metadata is what allows us to open up the pipeline, and re-seal it back together. An
end-to-end hermetically sealed pipeline is not optimized for data quality, it is optimized for
scaling and reproducibility.

BEAM SUMMIT NYC 2025#

Transformed Statistics

BEAM SUMMIT NYC 2025#

How can we make it better?

Step How Beam Helps How we can improve?

Pre-Ingestion Determine Schema for Data Utility code for schema generation, integrate
uuids better
Use more scalable runner than DirectRunner
(overall)

Data Splitting & Identification Deterministic Data Splitting at Scale Manage split point in metadata, splits in data
Generate UUID post-split
Component for temporal data (not just
managing split points, also sequences/time
series)

Data Exploration Produce JSON from TFRecord Multi-dimensional support (temporal, geo)
Figure out scaling visualization (e.g. infinite
zoom using “James Webb” feature.)

Non-graph intended feature injection Apply Arbitrary Python UDFs Support polygon generation from
visualization, auto generate UDF

Filter Remove examples which do not meet DQ
requirements

Store filtered data as a managed artifact,
filter individual examples

Post Transform Evaluator, BulkInference Integrate output into ML loop

BEAM SUMMIT NYC 2025#

Demo (Time/Conditions Permitting)

Capabilities:

How can we assign passports to our data? - Windowing/UUID

How can we attach luggage tags? - Inject Data Quality Indicators

How can we filter bad data at scale? - FilterUDFs

How can we manage the boarding process? - Data Quality Post
Transform (Future)

How can we manage, and possibly avoid, turbulence? -
BulkInference/Evaluator Integration (Future)

BEAM SUMMIT NYC 2025#

● If you know Beam, you are more than halfway there for large scale machine learning.
● Follow https://github.com/tensorflow/tfx to keep up with the improvements in large scale ML.
● Try to understand TFX component architecture for a Beam based component. Three parts: component, with

children component spec, and executor. I can provide book recommendations.
● Help me get these components into TFX!

Text and horizontal image

 PAGE NUMBER

Call to action

NYC 2025

QUESTIONS?
LinkedIn: https://www.linkedin.com/in/pritam-dodeja/

Github: https://github.com/pritamdodeja

Pritam Dodeja, ML Engineer
@ Intuitive.cloud

