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Overview

● A Brief History of Amazon BI

● Apache Iceberg and DeltaCAT Overview

● The Iceberg Streaming Problem

● An Open Exabyte-Scale Solution

● Current State & Future Work
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A Brief History of Amazon BI RIP Oracle Data Warehouse 🪦

2016-2018
PB-Scale Oracle Data 
Warehouse Deprecation

• Migrated 50PB from Oracle 
Data Warehouse to 
S3-Based Data Catalog

• Decoupled storage with 
Amazon Redshift & Apache 
Hive on Amazon EMR 
Compute
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A Brief History of Amazon BI Append-Only Compaction

2018-2019
EB-Scale Data Catalog & 
Lakehouse Formation

• Bring your own compute 
(EMR Spark, AWS Glue, 
Amazon Redshift 
Spectrum, etc.)

• LSM-based CDC 
“Compaction” using 
Apache Spark on Amazon 
EMR

Append deltas arrive in a table’s CDC log stream, where each 
delta contains pointers to one or more S3 files containing 
records to insert into the table. During a compaction job, no 
records are updated or deleted so the delta merge is a simple 
concatenation, but the compactor is still responsible for writing 
out files sized appropriately to optimize reads (i.e. merge tiny 
files into larger files and split massive files into smaller files).
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A Brief History of Amazon BI Upsert Compaction

2018-2019
EB-Scale Data Catalog & 
Lakehouse Formation

• Bring your own compute 
(EMR Spark, AWS Glue, 
Amazon Redshift 
Spectrum, etc.)

• LSM-based CDC 
“Compaction” using 
Apache Spark on Amazon 
EMR

Append and Upsert deltas arrive in a table’s CDC log 
stream, where each Upsert delta contains records to update 
or insert according to one or more merge keys. In this case, 
column1 is used as the merge key, so only the latest 
column2 updates are kept per distinct column1 value.
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A Quick Intro to Ray 

• Pythonic
• Provides distributed Python APIs for ML, data science, and general workloads.

• Intuitive
• Relatively simple to convert single-process Python to distributed.

• Scalable
• Can integrate PB-scale datasets with data processing and ML pipelines.

• Performant
• Reduces end-to-end latency of data processing and ML workflows.

• Efficient
• Reduces end-to-end cost of data processing and ML.

• Unified
• Can run all steps of mixed data processing, data science, and ML pipelines.
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A Brief History of Amazon BI Ray Shadow Compaction

2019-2023
Ray Integration

• EB-Scale Data Quality 
Analysis

• Spark-to-Ray Compaction 
Migration

• Reduced Cost by 82% 
(equivalent to $120MM/year 
of Amazon EC2 on-demand 
charges)

New deltas arriving in a data catalog table’s CDC log stream 
are merged into two separate compacted tables maintained 
separately by Apache Spark and Ray. The Data 
Reconciliation Service verifies that different data processing 
frameworks produce equivalent results when querying 
datasets produced by Apache Spark and Ray, while the 
Ray-based DQ Service compares key dataset statistics.
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Ray vs. Spark Compactor Efficiency
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A Brief History of Amazon BI Ray Exclusive Compaction

2024-2025
Ray Exclusivity

• Migrate all Table Queries to 
Ray Compactor Output

• Turn off Spark Compactor

• OSS implementation of Ray 
Compactor in DeltaCAT

New deltas arriving in a data catalog table’s CDC log stream 
are merged into only one compacted table maintained by 
Ray. Amazon BI tables are gradually being migrated from 
Spark compaction to Ray-Exclusive compaction, starting with 
our largest tables.
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A Quick Intro to DeltaCAT

• Catalog: High-level APIs to create, discover, 
organize, share, and manage datasets.

• Compute: Distributed data management 
procedures to read, write, and optimize datasets.

• Storage: In-memory and on-disk multimodal 
dataset formats.

• Sync: Synchronize DeltaCAT datasets to data 
warehouses and other table formats.

v1.X Used in Production @ Amazon (But Also Overfit to Amazon’s Use-Case)
v2.0 in Development for General Purpose Use (e.g. Iceberg Table Management)

A Portable Pythonic Data Lakehouse Powered by Ray
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A Brief History of Amazon BI Shared Data Files

2025+
Lakehouse Unification

• Reuse data files across 
multiple table formats

• Batch & Streaming 
Compute Integration with 
Iceberg

• OSS Implementations of 
Iceberg Table Maintenance 
Jobs using Ray in DeltaCAT

New deltas arriving in a data catalog table’s CDC log stream 
reuse the same data files across Iceberg, DeltaCAT, and any 
other compatible table formats (e.g., Hudi, Hive, etc.).
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DeltaCAT Overview
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Iceberg Overview

• Table Metadata Format
• Table Metadata File
• Snapshot File
• Manifest File
• Data File

• Catalog
• Table Metadata Pointer
• Java & Python Interfaces
• REST/Hive/JDBC/Glue/etc. 

Implementations
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Iceberg Table Directory Iceberg Metadata Directory
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Iceberg Data Directory Iceberg Partition Directory
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Iceberg Equality Deletes
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Iceberg Positional Deletes
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Iceberg Delete Vectors
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Iceberg Copy on Write
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Iceberg Merge on Read
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The Iceberg Streaming Problem

● Merge-on-Read Tables
○ Streaming Frameworks like Flink Prefer to Write

○ Equality Deletes (Cheap Writes, Expensive Reads)
○ Fast & Conflict-Free but may cause OOM Errors on Read ☹

○ Batch Frameworks like Spark Write
○ Positional Deletes (IcebergV2)
○ Binary Delete Vectors (IcebergV3)
○ Moderately Expensive Writes, Cheaper Reads
○ Less practical for High-Frequency Writes at TB-PB Scale ☹
○ Why? High-Latency and Susceptible to Irresolvable Write Conflicts
 

● Copy-on-Write Tables
○ Always Rewrite Data Files w/ Deletes Applied (Cheapest Reads, Expensive Writes)
○ Impractical for High-Frequency Writes at TB-PB Scale ☹
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The Iceberg Streaming Problem

● Issues & PRs Raised and Abandoned Since 2020
○ 2020-05-08: Add an action to rewrite equality deletes as position deletes

○ 2021-02-04: Spark: support replace equality deletes to position deletes

○ 2021-03-23: Add an action to rewrite equality deletes

○ 2023-02-27: Data file rewriting spark job fails with oom

○ 2023-12-04: RewritePositionDeleteFiles cannot work with equality delete file?

○ 2024-03-27: Spark rewrite Files Action OOM

○ 2024-07-09: Add RocksDBStructLikeSet for storing equality deletes



BEAM SUMMIT NYC 202545 

The Iceberg Streaming Problem
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An Open Exabyte-Scale Solution
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An Open Exabyte-Scale Solution
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An Open Exabyte-Scale Solution
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Current State

Testing with PB-scale production Iceberg tables
Q4 2025: Production onboarding to EB-scale production data catalog

Python converter job ready for experimental use
Beam Iceberg upserts via  beam.managed.Read()/Write() wrapper

Flink Iceberg delete conversion (equality to positional/vector)
Run manually or automatically via Iceberg table monitor agent

Run locally or on a distributed Ray cluster (in GCP, AWS, etc.)

https://github.com/ray-project/deltacat/tree/2.0/deltacat/examples/experimental/iceberg/converter/
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Future Work

● Python Native Beam IO Connector?
● +1 Github Issue #561 @ https://github.com/ray-project/deltacat/issues/561

● Flink IO Connector?
● +1 Github issue #562 @ https://github.com/ray-project/deltacat/issues/562

● Ray Positional/Vector Delete Materialization for Iceberg?
● +1 Github issue #121 @ https://github.com/ray-project/deltacat/issues/121
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QUESTIONS?
@Patrick Ames on Ray Slack

https://github.com/ray-project/deltacat
https://github.com/pdames

Patrick Ames


