
NYC 2025

From taming energy market data to
hyperparameter hunting at scale:

leveraging Apache Beam & BigQuery

Nicholas Bonfanti, HelioSwitch

Matteo Pacciani, HelioSwitch

BEAM SUMMIT NYC 2025#

The company / team

Simone Biondi,
co-founder

Nicholas Bonfanti,
co-founder

Manuele Aufiero,
co-founder

Dario Passarello,
Software Engineer

Alessia Gualtieri,
Software Engineer

Matteo Scandolo,
co-founder

Matteo Pacciani,
Data Engineer

HelioSwitch

The company / team

Pietro Arsi,
Software Engineer

Find us at helioswitch.cloud

BEAM SUMMIT NYC 2025#

Agenda

● The needs
○ How the (Italian) electricity market works
○ Why are day-ahead forecasts needed
○ Why is DWH scalability needed

● The solutions
○ From XML over WebDAV to BigQuery using Apache Beam
○ Apache Beam for distributed forecasting
○ The edge of distributed Bayesian optimization

● The questions
○ Next development step
○ Any questions?

BEAM SUMMIT NYC 2025#

Balancing Responsible Parties
Market participant legally and financially
responsible for any difference between the
electricity it schedules to inject or withdraw
from the grid and what is actually injected or
withdrawn in real time.

How the (Italian) electricity market works

Italian electricity market: the very basics

GME – Energy Exchange
Handles the exchange over which all
electricity is traded.

Producers
Companies owning/operating power
generation plants, e.g. wind, solar, gas,
hydro.

Buyers
Companies purchasing energy from the
market, e.g. wholesalers, utilities, traders,
large industrial customers.

Terna – TSO
The Transmission System Operator
manages the grid and ensures the
system's security and reliability.

ARERA – Regulator
Independent body whose primary
mission is to protect the interests of
consumers and to promote competition,
efficiency, and quality.

Buys/sells electricity
ahead of time on

Holds a contract with

Must operate within
the rules defined by

BEAM SUMMIT NYC 2025#

How the (Italian) electricity market works

Italian electricity market: subdivision by trading timeframe
MTE – Forward

Timeframe: Long-term, from
months up to a year before the
physical delivery of electricity.

Primary Goal: Hedging against
future price volatility.

Market Nature: continuous
trading, mostly OTC, registered
over GME platform.

Pricing Mechanism: Pay-as-Bid in
a continuous market.

MGP – Day-Ahead

Timeframe: The day before the
physical delivery of electricity.

Primary Goal: Main wholesale
market for electricity. Most of the
electricity volume is traded here.

Market Nature: GME-managed,
exchange-traded and
auction-based.

Pricing Mechanism: Marginal
pricing for each hour by
intersecting aggregate supply
and demand for each market
zone.

XBID/MI – Intraday

Timeframe: After MGP, up to one
hour before delivery.

Primary Goal: To allow
participants to adjust their
positions.

Market Nature: GME-managed
continuous trading (XBID) and
intraday auctions (MI).

Pricing Mechanism: Pay-as-Bid in
the continuous XBID market and
marginal price in the MI auctions.

MSD/MB – Balancing

Timeframe: Day ahead to
real-time.

Primary Goal: Allowing the TSO
(Terna) to procure the resources it
news to manage the grid securely
(MSD), and activate them to
balance load and generation
second-by-second.

Market Nature: Auctions with the
TSO as sole buyer and qualified
providers as sellers.

Pricing Mechanism: Pay-as-Bid,
with offers accepted on economic
merit and technical need.

BEAM SUMMIT NYC 2025#

Why are day-ahead forecasts needed

Scheduling non-dispatchable generation and demand
Dispatchable
generation and
demand

Natural gas, reservoir hydro,
nuclear, coal, and biomass are
dispatchable: their generation
can be programmed within the
constraints of the underlying
technology.

Programmable demand generally
falls under energy storage plants
or load curtailment of large
consumers.

How can BRPs
schedule how much
to buy/sell the day

ahead?

Non-dispatchable
generation and
demand

Solar, wind, and hydro run-of-river
are non-dispatchable: their
generation is strictly related to the
weather conditions, and can be
only forecasted and not
programmed.

Almost all demand is
non-dispatchable, meaning that
the end user will not schedule
their actual energy consumption
for the next day.

Without the option of
actively planning, these must
be forecasted.

While renewable generation
depends almost entirely on
weather forecasts, demand
depend both on weather
and on human activities, e.g.
weekday or holidays.

Using the available historical
data for generation,
demand, and weather, it is
possible to build ML-based
forecasting models.

BEAM SUMMIT NYC 2025#

Why are day-ahead forecasts needed

Simplified case: only MGP and MSD/MB
MGP – Day-Ahead

Timeframe: The day before the
physical delivery of electricity.

Primary Goal: Main wholesale
market for electricity. Most of the
electricity volume is traded here.

Market Nature: GME-managed,
exchange-traded and
auction-based.

Pricing Mechanism: Marginal
pricing for each hour by
intersecting aggregate supply
and demand for each market
zone.

MSD/MB – Balancing

Timeframe: Day ahead to
real-time.

Primary Goal: Allowing the TSO
(Terna) to procure the resources it
news to manage the grid securely
(MSD), and activate them to
balance load and generation
second-by-second.

Market Nature: Auctions with the
TSO as sole buyer and qualified
providers as sellers.

Pricing Mechanism: Pay-as-Bid,
with offers accepted on economic
merit and technical need.

Energy is bought at
MGP price by BRPs
the day ahead.

All these offers prices
are averaged out,

creating an
unbalance price.

All the mismatch energy
between the scheduled and the

real one is automatically
sold/bought at this price via the

contract with the TSO.

The unbalance price is more
volatile than the day-ahead one,
and introduces both risks and
costs in erroneous scheduling.

How does the BRP
pays/get payed for

the unscheduled
electricity?

BEAM SUMMIT NYC 2025#

Why is DWH scalability needed

The available historical data
1st gen (1G) meters

Used for larger consumers, they
are capable of measuring data in
quarter-hourly intervals, however
data from these meters is typically
collected and transmitted to the
market operators only on a
monthly basis.

Load Profiling (PRA)

Most of the smaller consumers (<
55kW) have historically been in
this category: due to the meters
only registering monthly
consumption, the quarter-hourly
profiles are inferred on the
aggregate level.

2nd gen (2G) meters

These meters are the latest
evolution and represent a major
upgrade. While they also measure
quarter-hourly consumption at
the POD, their consumption data
is validated daily, making it
available to the system operator
the day after consumption (D+1).

…are being actively
replaced by these by the

tens of millions…

The rapid increase of
POD-by-POD
quarter-hourly metering
has brought significant
stress on legacy
infrastructure design to
handle mostly aggregated
data.

New DWH solutions had to
be designed for this
paradigm shift.

BEAM SUMMIT NYC 2025#

Why is DWH scalability needed

Our company and tech stack

This increase in both the data engineering effort and possibilities has bought HelioSwitch where
is it now:

1. handling demand DWH and forecasts for 12 utilities,
2. amouting at more than 2.2 millions PODs with years-long quarter-hourly data,
3. for a total of more than 17 TWh of demand forecasted by our algorithms,
4. i.e. the ~5.5% of the Italian aggregate demand.

Using Apache Beam + Google BigQuery as the main data engineering and ML heavy-lifters.

+

BEAM SUMMIT NYC 2025#

All the POD data is
delivered to us with
NextCloud, a software using
WebDAV as underlying
protocol.

From XML over WebDAV to BigQuery using Apache Beam

It consists often in millions
of XML files organized in a
file-system like structure.

Dataflow pipelines
download these files to GCS
and continuously verifies
the integrity and
completeness of the data
transfer.

Downloading the data

BEAM SUMMIT NYC 2025#

From XML over WebDAV to BigQuery using Apache BeamDownloading the data

Initialization.

Exploring the folder structure
and metadata.

Reading from a logs table.

Processing and saving logs
about folders and
metadata.

Listing files and extracting
relevant metadata.

Downloading the files and
uploading them to GCS.

Defining the process status
and failures for a

dedicated error-correcting
pipeline.

Logging the status.

Search for all the files marked
for retry in the other pipeline

logs.

Exploring folder structure.

Using logs for initialization.

Logging the status.

Processing and saving
logs about files and
metadata.

Downloading the files and
uploading them to GCS.

Defining the process status
and failures marking them
either lost or for a re-run.

Main downloading pipeline Error-correction pipeline

BEAM SUMMIT NYC 2025#

From XML over WebDAV to BigQuery using Apache Beam

Downloading the data
Apart from the “usual suspect” (e.g., beam.io.ReadFromBigQuery), few keys components are used to
ensure pipeline performance and robustness:

beam.BatchElements(
 min_batch_size=...,
 max_batch_size=...,
 target_batch_overhead=...,
 target_batch_duration_secs=...,
)

Using WebDAV and downloading files
introduces significant I/O latency.

This PTransform allows to
dynamically batch elements and
adapt over a latency that can easily
change.

beam.pvalue.TaggedOutput(
 tag=...,
 value=...,
)

This pipeline both downloads and
check files, read/writes logs, and
saves informations about the
encountered data structure.

This feature allows to split and
handle separately all these different
cases.

beam.pvalue.AsSingleton(
 pcoll=...,
 default_value=...,
)

This allows to treat a single-element
PCollection as a DoFn side-argument.

It is essential for efficiently
broadcasting a single piece of
shared runtime configuration
computed from the data.

BEAM SUMMIT NYC 2025#

The data is read from the
GCS bucket used by the
downloading pipeline.

From XML over WebDAV to BigQuery using Apache Beam

A Dataflow pipeline
converts the XML data to
JSON-like just validating
the contents with the least
amount of transforming
possible (ELT).

All the processed files are
moved in dedicated folders,
indicating their status,
using the bucket folder
paths as a logging.

Parsing the data

BEAM SUMMIT NYC 2025#

From XML over WebDAV to BigQuery using Apache BeamParsing the data

Initialization on matching
all relevant files from the
appropriate GCS folders.

Opening and parsing the
files according to the

expected table schema.

GCS to BigQuery parsing pipeline

Writing all the parsed
JSON-like data to
BigQuery.

Moving the files according
to parsing results and

status.

BEAM SUMMIT NYC 2025#

From XML over WebDAV to BigQuery using Apache Beam

Parsing the data
The most important component of the pipeline is the XML parser.

It takes both the xml.etree.ElementTree and a apache_beam.io.gcp.(...).TableSchema, and recursively
interpret the XML data coherently with the given table schema.

Following a ELT approach (instead of ETL) this first step avoids any data transformation, resulting in no
information loss or change after the parsing.

The main downside is that the messy structure of the original data propagates to the unprocessed
table, resulting ~1800 columns, often nested, repeated, and with redundant information.

In order to optimize the amount of data read by subsequent services, a dedicated “processed”
integer-typed row is added and used as BigQuery partitioning. The binary representation of its integer
values represents which services have already parsed the row (e.g., 9 → 001001 → services n. 1 and 4).

BEAM SUMMIT NYC 2025#

Apache Beam for distributed forecasting

Pre-processing the data for the forecasting in BigQuery

In its most basic form the processed
data is structured as follows:

Timestamp of the reference 15’ interval

Unique POD ID

Location of the POD

Properties of the POD

Total demand in the 15’ interval

Weather in the 15’ at the POD location

Calendar data (e.g., holiday)

The data can be aggregated by
location and/or properties of the

POD before forecasting.

This is not necessary, since the
models could operate on a

POD-by-POD basis.

In this example we will pretend to
forecast at a city and voltage level:

Timestamp of the reference 15’ interval

—

City of the aggregation

Voltage of the aggregation

Total aggregate demand in the 15’ interval

Weather in the 15’ in the city

Calendar data (e.g., holiday)

BEAM SUMMIT NYC 2025#

Apache Beam for distributed forecasting

Pre-processing the data for the forecasting in Beam

Data is loaded from
BigQuery between two
desired timestamps:

Timestamp
City
Voltage
Aggregate demand
Weather
Calendar data

Data is aggregated for
City and Voltage with
beam.GroupByKey()
and the elements are
made into a
pandas.DataFrame:

City
Voltage
Dataframe with

- Timestamp
- Aggregate demand
- Weather
- Calendar data

Existing ML models are
pulled from GCS for
each city/voltage
combination if present,
and merged using
beam.CoGroupByKey():

City
Voltage
ML model
Dataframe with

- Timestamp
- Aggregate demand
- Weather
- Calendar data

Apache Beam allows to distribute the tuning/training/inference of multiple “small” models, in this
example one for each city-voltage combination.

BEAM SUMMIT NYC 2025#

Apache Beam for distributed forecasting

Overview of the forecasting process in Beam

City + Voltage + ML model
Dataframe with

- Timestamp
- Past demand (~30 days)
- Future weather (forecast, ~10 days)
- Future calendar data (~10 days)

Apache Beam allows to distribute the tuning/training/searching of multiple “small” models, in this
example one for each city-voltage combination.

Inference

1~4/day

City + Voltage + ML model
Dataframe with

- Timestamp
- Past demand (~1 year)
- Past weather (~1 year)
- Past calendar data (~1 year)

City + Voltage + ML model
Dataframe with

- Timestamp
- Past demand (~2 years)
- Past weather (~2 years)
- Past calendar data (~2 years)

City + Voltage + ML model
Dataframe with

- Timestamp
- Future demand (forecast, ~10 days)

The data is then uploaded to BigQuery

City + Voltage + updated ML model

The model is then uploaded to GCS

City + Voltage + new ML model
Dataframe with

- Timestamp
- Backtested demand

The model is uploaded to GCS and the data to BQ

Training

1/week

Search

1/week

BEAM SUMMIT NYC 2025#

Apache Beam for distributed forecastingInference in Beam

This branch loads the
models from GCS,
serialized with Joblib.

The models have their
“keys” (in our example
city+voltage) saved in the
serialized object.

This BigQuery call extracts
both the past and future
entries for our inference,

and groups it into a unique
Dataframe for each “key”

(city+voltage).

Data and model are merged here.

The models are executed and the
results formatted as needed for

the BigQuery upload.

The data is uploaded to
BigQuery.

Weather data,
e.g.
temperature,
irradiance.

(forecasted)

Calendar
data, e.g.
holiday, day
of week, hour
of day.

(known)

Available
demand data

(unavailable)
Today

Regression component

Au
to

re
gr

es
si

on
 c

om
po

ne
nt

This process is distributed
over for each model used. In
our example, it is repeated for
each city-voltage combination.

The code generating
this pipeline is the
same of the training
and search ones, but
results in different
DAGs based on given
arguments thanks to
DataFlow Flex
Templates.

BEAM SUMMIT NYC 2025#

Apache Beam for distributed forecastingTraining in Beam

This branch loads the
models from GCS,

serialized with Joblib.

Whenever an existing
city+voltage does not

have a corresponding
model, it is instantiated

with default
hyperparameters and

configs.

This BigQuery call
extracts historic entries
for the training, and
groups it into a unique
Dataframe for each “key”
(city+voltage).

The models are trained on the
new data, using the previous

model hyperparameters.

The models are executed and the
results formatted as needed for

the BigQuery upload.

Once a week the models are training
over at least one year of data, in
order to capture the demand
dynamics over all seasons.

Depending on the necessity, the
training can be initialized with the
existing weights, or from scratch,
keeping only the hyperparameters
and configuration from the
downloaded one.

The models are autoregressive and
recurrent, and always need a window
of past demand data.

The coupling of recurrency and
weather dependency allows us to
model complex dynamics such as
thermal inertia of buildings.

The code generating
this pipeline is the
same of the forecast
and search ones, but
results in different
DAGs based on given
arguments thanks to
DataFlow Flex
Templates.

BEAM SUMMIT NYC 2025#

Apache Beam for distributed forecastingSearching in Beam

As for the previous
pipelines, this one loads
the data from BigQuery,

and groups it, creating a
Dataframe for each key.

Once a month the models undergo a
hyperparameter optimization process.

This Dataflow pipeline groups ~2 years of data,
creates multiple models with random
hyperparameters, run a training with
cross-validation, and evaluates the models on the
validation set.

The best performing models are identified and
used to update the distribution from which the
hyperparameters are sampled, and re-samples
them, iterating the process.

More than “hyperparameter hunting”, this
presentation title should say “hyperparameter
trawling”.

In this example the models
are instantiated from

scratch, executed, and
uploaded. It is possible to

start from preexisting
model data.

Backtesting
prediction are
formatted and

uploaded to
BigQuery.

Model performance
metrics are
formatted and
uploaded to
BigQuery.

The code generating
this pipeline is the
same of the forecast
and training ones,
but results in
different DAGs based
on given arguments
thanks to DataFlow
Flex Templates.

BEAM SUMMIT NYC 2025#

The edge of distributed Bayesian optimization

When there are from thousands to millions
of models, manually experimenting with
hyperparameters quickly becomes
unfeasible.

Every city-voltage (in this example)
combination has not only a trained model,
but a hyperparameter distribution stored
on GCS.

When simply re-training a model we can
either keep the existing hyperparameters,
or sample from the distribution.

When searching for the optimal
hyperparameters, we update our
distribution base on the average error on a
validation set, unseen in the training
process.

How model Bayesian optimization works

Training 1, trial 1 Eval

Training 2, trial 1 Eval

Training 3, trial 1 Eval

Training 1, trial 2 Eval

Training 2, trial 2 Eval

Training 3, trial 2 Eval

Training 1, trial 3 Eval

Training 2, trial 3 Eval

Training 3, trial 3 Eval

Final training

Hyper
parameters
distribution

update

Hyper
parameters
distribution

update

Hyper
parameters
distribution

update

Downloaded hyperparameters
distribution

BEAM SUMMIT NYC 2025#

The edge of distributed Bayesian optimization

At this point our process has multiple “scales”:

● iterations within the training
● trainings within the trial
● trials within the optimization
● optimizations over all the models
● updated models month by month

We chose to distribute over the second to last: the first two are more suited for standard parallelization,
and the complexities of distributing between trials over the same optimization (mainly updating and being
updated by the same distribution concurrently) make it a sub-optimal choice with respect to the second to
last one, which is intrinsically easier to distribute. The last one is intrinsically serial due to data availability.

How to run the bayesian optimization

Parallelized

Serial
Distributed with Beam
Now serial, potentially distributed with Beam

BEAM SUMMIT NYC 2025#

Next development step

While this approach ensures HelioSwitch supplies SOTA forecasts for the energy markets, there are multiple
ways to improve.

These are some of the ideas:

● Distributing with Beam not only over the models, but over the trials of a single model optimization
process.

● Combine the information of the hyperparameter distribution among the different models to create a
zero-shot hyperparameter learner.

● Switch to a single hyperparameters distribution among all the models that can be conditioned on
metadata, allowing for information-exchanging among the models.

What now?

NYC 2025

THANKS!
QUESTIONS? Nicholas Bonfanti

https://www.linkedin.com/in/nicholas-bonfanti

Matteo Pacciani
https://www.linkedin.com/in/matteo-pacciani

HelioSwitch
https://www.linkedin.com/company/helioswitch

https://helioswitch.cloud

Any questions?

