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Balancing Responsible Parties
Market participant legally and financially 
responsible for any difference between the 
electricity it schedules to inject or withdraw 
from the grid and what is actually injected or 
withdrawn in real time.

How the (Italian) electricity market works

Italian electricity market: the very basics

GME – Energy Exchange
Handles the exchange over which all 
electricity is traded.

Producers
Companies owning/operating power 
generation plants, e.g. wind, solar, gas, 
hydro.

Buyers
Companies purchasing energy from the 
market, e.g. wholesalers, utilities, traders, 
large industrial customers.

Terna – TSO
The Transmission System Operator 
manages the grid and ensures the 
system's security and reliability.

ARERA – Regulator
Independent body whose primary 
mission is to protect the interests of 
consumers and to promote competition, 
efficiency, and quality.

Buys/sells electricity 
ahead of time on

Holds a contract with

Must operate within 
the rules defined by
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How the (Italian) electricity market works

Italian electricity market: subdivision by trading timeframe
MTE – Forward

Timeframe: Long-term, from 
months up to a year before the 
physical delivery of electricity.

Primary Goal: Hedging against 
future price volatility. 

Market Nature: continuous 
trading, mostly OTC, registered 
over GME platform.

Pricing Mechanism: Pay-as-Bid in 
a continuous market.

MGP – Day-Ahead

Timeframe: The day before the 
physical delivery of electricity.

Primary Goal: Main wholesale 
market for electricity. Most of the 
electricity volume is traded here. 

Market Nature: GME-managed, 
exchange-traded and 
auction-based.

Pricing Mechanism: Marginal 
pricing for each hour by 
intersecting aggregate supply 
and demand for each market 
zone.

XBID/MI – Intraday

Timeframe: After MGP, up to one 
hour before delivery.

Primary Goal: To allow 
participants to adjust their 
positions.

Market Nature: GME-managed 
continuous trading (XBID) and 
intraday auctions (MI).

Pricing Mechanism: Pay-as-Bid in 
the continuous XBID market and 
marginal price in the MI auctions.

MSD/MB – Balancing

Timeframe: Day ahead to 
real-time. 

Primary Goal: Allowing the TSO 
(Terna) to procure the resources it 
news to manage the grid securely 
(MSD), and activate them to 
balance load and generation 
second-by-second.

Market Nature: Auctions with the 
TSO as sole buyer and qualified 
providers as sellers.

Pricing Mechanism: Pay-as-Bid, 
with offers accepted on economic 
merit and technical need.
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Why are day-ahead forecasts needed

Scheduling non-dispatchable generation and demand
Dispatchable 
generation and 
demand

Natural gas, reservoir hydro, 
nuclear, coal, and biomass are 
dispatchable: their generation 
can be programmed within the 
constraints of the underlying 
technology.

Programmable demand generally 
falls under energy storage plants 
or load curtailment of large 
consumers.

How can BRPs 
schedule how much 
to buy/sell the day 

ahead?

Non-dispatchable 
generation and 
demand

Solar, wind, and hydro run-of-river 
are non-dispatchable: their 
generation is strictly related to the 
weather conditions, and can be 
only forecasted and not 
programmed.

Almost all demand is 
non-dispatchable, meaning that 
the end user will not schedule 
their actual energy consumption 
for the next day.

Without the option of 
actively planning, these must 
be forecasted.

While renewable generation 
depends almost entirely on 
weather forecasts, demand 
depend both on weather 
and on human activities, e.g. 
weekday or holidays.

Using the available historical 
data for generation, 
demand, and weather, it is 
possible to build ML-based 
forecasting models.
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Why are day-ahead forecasts needed

Simplified case: only MGP and MSD/MB
MGP – Day-Ahead

Timeframe: The day before the 
physical delivery of electricity.

Primary Goal: Main wholesale 
market for electricity. Most of the 
electricity volume is traded here. 

Market Nature: GME-managed, 
exchange-traded and 
auction-based.

Pricing Mechanism: Marginal 
pricing for each hour by 
intersecting aggregate supply 
and demand for each market 
zone.

MSD/MB – Balancing

Timeframe: Day ahead to 
real-time. 

Primary Goal: Allowing the TSO 
(Terna) to procure the resources it 
news to manage the grid securely 
(MSD), and activate them to 
balance load and generation 
second-by-second.

Market Nature: Auctions with the 
TSO as sole buyer and qualified 
providers as sellers.

Pricing Mechanism: Pay-as-Bid, 
with offers accepted on economic 
merit and technical need.

Energy is bought at 
MGP price by BRPs 
the day ahead.

All these offers prices 
are averaged out, 

creating an 
unbalance price.

All the mismatch energy 
between the scheduled and the 

real one is automatically 
sold/bought at this price via the 

contract with the TSO.

The unbalance price is more 
volatile than the day-ahead one, 
and introduces both risks and 
costs in erroneous scheduling.

How does the BRP 
pays/get payed for 

the unscheduled 
electricity?
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Why is DWH scalability needed

The available historical data
1st gen (1G) meters

Used for larger consumers, they 
are capable of measuring data in 
quarter-hourly intervals, however 
data from these meters is typically 
collected and transmitted to the 
market operators only on a 
monthly basis.

Load Profiling (PRA)

Most of the smaller consumers (< 
55kW) have historically been in 
this category: due to the meters 
only registering monthly 
consumption, the quarter-hourly 
profiles are inferred on the 
aggregate level.

2nd gen (2G) meters

These meters are the latest 
evolution and represent a major 
upgrade. While they also measure 
quarter-hourly consumption at 
the POD, their consumption data 
is validated daily, making it 
available to the system operator 
the day after consumption (D+1).

…are being actively 
replaced by these by the 

tens of millions…

The rapid increase of 
POD-by-POD 
quarter-hourly metering 
has brought significant 
stress on legacy 
infrastructure design to 
handle mostly aggregated 
data.

New DWH solutions had to 
be designed for this 
paradigm shift.
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Why is DWH scalability needed

Our company and tech stack

This increase in both the data engineering effort and possibilities has bought HelioSwitch where 
is it now:

1. handling demand DWH and forecasts for 12 utilities,
2. amouting at more than 2.2 millions PODs with years-long quarter-hourly data,
3. for a total of more than 17 TWh of demand forecasted by our algorithms,
4. i.e. the ~5.5% of the Italian aggregate demand.

Using Apache Beam + Google BigQuery as the main data engineering and ML heavy-lifters.

+
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All the POD data is 
delivered to us with 
NextCloud, a software using 
WebDAV as underlying 
protocol.

From XML over WebDAV to BigQuery using Apache Beam

It consists often in millions 
of XML files organized in a 
file-system like structure.

Dataflow pipelines 
download these files to GCS 
and continuously verifies 
the integrity and 
completeness of the data 
transfer.

Downloading the data
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From XML over WebDAV to BigQuery using Apache BeamDownloading the data

Initialization.

Exploring the folder structure 
and metadata.

Reading from a logs table.

Processing and saving logs 
about folders and 
metadata.

Listing files and extracting 
relevant metadata.

Downloading the files and 
uploading them to GCS.

Defining the process status 
and failures for a 

dedicated error-correcting 
pipeline.

Logging the status.

Search for all the files marked 
for retry in the other pipeline 

logs.

Exploring folder structure.

Using logs for initialization.

Logging the status.

Processing and saving 
logs about files and 
metadata.

Downloading the files and 
uploading them to GCS.

Defining the process status 
and failures marking them 
either lost or for a re-run.

Main downloading pipeline Error-correction pipeline
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From XML over WebDAV to BigQuery using Apache Beam

Downloading the data
Apart from the “usual suspect” (e.g., beam.io.ReadFromBigQuery), few keys components are used to 
ensure pipeline performance and robustness:

beam.BatchElements(
  min_batch_size=...,
  max_batch_size=...,
  target_batch_overhead=...,
  target_batch_duration_secs=...,
)

Using WebDAV and downloading files 
introduces significant I/O latency.

This PTransform allows to 
dynamically batch elements and 
adapt over a latency that can easily 
change.

beam.pvalue.TaggedOutput(
  tag=...,
  value=...,
)

This pipeline both downloads and 
check files, read/writes logs, and 
saves informations about the 
encountered data structure. 

This feature allows to split and 
handle separately all these different 
cases.

beam.pvalue.AsSingleton(
  pcoll=...,
  default_value=...,
)

This allows to treat a single-element 
PCollection as a DoFn side-argument.

It is essential for efficiently 
broadcasting a single piece of 
shared runtime configuration 
computed from the data.
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The data is read from the 
GCS bucket used by the 
downloading pipeline.

From XML over WebDAV to BigQuery using Apache Beam

A Dataflow pipeline 
converts the XML data to 
JSON-like just validating 
the contents with the least 
amount of transforming 
possible (ELT).

All the processed files are 
moved in dedicated folders, 
indicating their status, 
using the bucket folder 
paths as a logging.

Parsing the data
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From XML over WebDAV to BigQuery using Apache BeamParsing the data

Initialization on matching 
all relevant files from the 
appropriate GCS folders.

Opening and parsing the 
files according to the 

expected table schema.

GCS to BigQuery parsing pipeline

Writing all the parsed 
JSON-like data to 
BigQuery.

Moving the files according 
to parsing results and 

status.
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From XML over WebDAV to BigQuery using Apache Beam

Parsing the data
The most important component of the pipeline is the XML parser.

It takes both the xml.etree.ElementTree and a apache_beam.io.gcp.(...).TableSchema, and recursively 
interpret the XML data coherently with the given table schema.

Following a ELT approach (instead of ETL) this first step avoids any data transformation, resulting in no 
information loss or change after the parsing.

The main downside is that the messy structure of the original data propagates to the unprocessed 
table, resulting ~1800 columns, often nested, repeated, and with redundant information.

In order to optimize the amount of data read by subsequent services, a dedicated “processed” 
integer-typed row is added and used as BigQuery partitioning. The binary representation of its integer 
values represents which services have already parsed the row (e.g., 9 → 001001 → services n. 1 and 4).
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Apache Beam for distributed forecasting

Pre-processing the data for the forecasting in BigQuery

In its most basic form the processed 
data is structured as follows:

Timestamp of the reference 15’ interval

Unique POD ID

Location of the POD

Properties of the POD

Total demand in the 15’ interval

Weather in the 15’ at the POD location

Calendar data (e.g., holiday)

The data can be aggregated by 
location and/or properties of the 

POD before forecasting.

This is not necessary, since the 
models could operate on a 

POD-by-POD basis.

In this example we will pretend to 
forecast at a city and voltage level:

Timestamp of the reference 15’ interval

—

City of the aggregation

Voltage of the aggregation

Total aggregate demand in the 15’ interval

Weather in the 15’ in the city

Calendar data (e.g., holiday)
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Apache Beam for distributed forecasting

Pre-processing the data for the forecasting in Beam

Data is loaded from 
BigQuery between two 
desired timestamps:

Timestamp
City
Voltage
Aggregate demand
Weather
Calendar data

Data is aggregated for 
City and Voltage with 
beam.GroupByKey() 
and the elements are 
made into a 
pandas.DataFrame:

City
Voltage
Dataframe with

- Timestamp
- Aggregate demand
- Weather
- Calendar data

Existing ML models are 
pulled from GCS for 
each city/voltage 
combination if present, 
and merged using 
beam.CoGroupByKey():

City
Voltage
ML model
Dataframe with

- Timestamp
- Aggregate demand
- Weather
- Calendar data

Apache Beam allows to distribute the tuning/training/inference of multiple “small” models, in this 
example one for each city-voltage combination.
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Apache Beam for distributed forecasting

Overview of the forecasting process in Beam

City + Voltage + ML model
Dataframe with

- Timestamp
- Past demand (~30 days)
- Future weather (forecast, ~10 days)
- Future calendar data (~10 days)

Apache Beam allows to distribute the tuning/training/searching of multiple “small” models, in this 
example one for each city-voltage combination.

Inference

1~4/day

City + Voltage + ML model
Dataframe with

- Timestamp
- Past demand (~1 year)
- Past weather (~1 year)
- Past calendar data (~1 year)

City + Voltage + ML model
Dataframe with

- Timestamp
- Past demand (~2 years)
- Past weather (~2 years)
- Past calendar data (~2 years)

City + Voltage + ML model
Dataframe with

- Timestamp
- Future demand (forecast, ~10 days)

The data is then uploaded to BigQuery

City + Voltage + updated ML model

The model is then uploaded to GCS

City + Voltage + new ML model
Dataframe with

- Timestamp
- Backtested demand

The model is uploaded to GCS and the data to BQ

Training

1/week

Search

1/week
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Apache Beam for distributed forecastingInference in Beam

This branch loads the 
models from GCS, 
serialized with Joblib.

The models have their 
“keys” (in our example 
city+voltage) saved in the 
serialized object.

This BigQuery call extracts 
both the past and future 
entries for our inference, 

and groups it into a unique 
Dataframe for each “key” 

(city+voltage).

Data and model are merged here.

The models are executed and the 
results formatted as needed for 

the BigQuery upload.

The data is uploaded to 
BigQuery.

Weather data, 
e.g. 
temperature, 
irradiance.

(forecasted)

Calendar 
data, e.g. 
holiday, day 
of week, hour 
of day.

(known)

Available 
demand data

(unavailable)   
Today

Regression component

Au
to

re
gr

es
si

on
 c

om
po

ne
nt

This process is distributed 
over for each model used. In 
our example, it is repeated for 
each city-voltage combination.

The code generating 
this pipeline is the 
same of the training 
and search ones, but 
results in different 
DAGs based on given 
arguments thanks to 
DataFlow Flex 
Templates.



BEAM SUMMIT NYC 2025# 

Apache Beam for distributed forecastingTraining in Beam

This branch loads the 
models from GCS, 

serialized with Joblib.

Whenever an existing 
city+voltage does not 

have a corresponding 
model, it is instantiated 

with default 
hyperparameters and 

configs.

This BigQuery call 
extracts historic entries 
for the training, and 
groups it into a unique 
Dataframe for each “key” 
(city+voltage).

The models are trained on the 
new data, using the previous 

model hyperparameters.

The models are executed and the 
results formatted as needed for 

the BigQuery upload.

Once a week the models are training 
over at least one year of data, in 
order to capture the demand 
dynamics over all seasons.

Depending on the necessity, the 
training can be initialized with the 
existing weights, or from scratch, 
keeping only the hyperparameters 
and configuration from the 
downloaded one.

The models are autoregressive and 
recurrent, and always need a window 
of past demand data.

The coupling of recurrency and 
weather dependency allows us to 
model complex dynamics such as 
thermal inertia of buildings.

The code generating 
this pipeline is the 
same of the forecast 
and search ones, but 
results in different 
DAGs based on given 
arguments thanks to 
DataFlow Flex 
Templates.
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Apache Beam for distributed forecastingSearching in Beam

As for the previous 
pipelines, this one loads 
the data from BigQuery, 

and groups it, creating a 
Dataframe for each key.

Once a month the models undergo a 
hyperparameter optimization process.

This Dataflow pipeline groups ~2 years of data, 
creates multiple models with random 
hyperparameters, run a training with 
cross-validation, and evaluates the models on the 
validation set. 

The best performing models are identified and 
used to update the distribution from which the 
hyperparameters are sampled, and re-samples 
them, iterating the process.

More than “hyperparameter hunting”, this 
presentation title should say “hyperparameter 
trawling”.

In this example the models 
are instantiated from 

scratch, executed, and 
uploaded. It is possible to 

start from preexisting 
model data.

Backtesting 
prediction are 
formatted and 

uploaded to 
BigQuery.

Model performance 
metrics are 
formatted and 
uploaded to 
BigQuery.

The code generating 
this pipeline is the 
same of the forecast 
and training ones, 
but results in 
different DAGs based 
on given arguments 
thanks to DataFlow 
Flex Templates.
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The edge of distributed Bayesian optimization

When there are from thousands to millions 
of models, manually experimenting with 
hyperparameters quickly becomes 
unfeasible.

Every city-voltage (in this example) 
combination has not only a trained model, 
but a hyperparameter distribution stored 
on GCS.

When simply re-training a model we can 
either keep the existing hyperparameters, 
or sample from the distribution.

When searching for the optimal 
hyperparameters, we update our 
distribution base on the average error on a 
validation set, unseen in the training 
process.

How model Bayesian optimization works

Training 1, trial 1 Eval

Training 2, trial 1 Eval

Training 3, trial 1 Eval

Training 1, trial 2 Eval

Training 2, trial 2 Eval

Training 3, trial 2 Eval

Training 1, trial 3 Eval

Training 2, trial 3 Eval

Training 3, trial 3 Eval

Final training

Hyper 
parameters 
distribution 

update

Hyper 
parameters 
distribution 

update

Hyper 
parameters 
distribution 

update

Downloaded hyperparameters 
distribution
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The edge of distributed Bayesian optimization

At this point our process has multiple “scales”:

● iterations within the training
● trainings within the trial
● trials within the optimization
● optimizations over all the models
● updated models month by month

We chose to distribute over the second to last: the first two are more suited for standard parallelization, 
and the complexities of distributing between trials over the same optimization (mainly updating and being 
updated by the same distribution concurrently) make it a sub-optimal choice with respect to the second to 
last one, which is intrinsically easier to distribute. The last one is intrinsically serial due to data availability.

How to run the bayesian optimization

Parallelized

Serial
Distributed with Beam
Now serial, potentially distributed with Beam
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Next development step

While this approach ensures HelioSwitch supplies SOTA forecasts for the energy markets, there are multiple 
ways to improve.

These are some of the ideas:

● Distributing with Beam not only over the models, but over the trials of a single model optimization 
process.

● Combine the information of the hyperparameter distribution among the different models to create a 
zero-shot hyperparameter learner.

● Switch to a single hyperparameters distribution among all the models that can be conditioned on 
metadata, allowing for information-exchanging among the models.

What now?
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