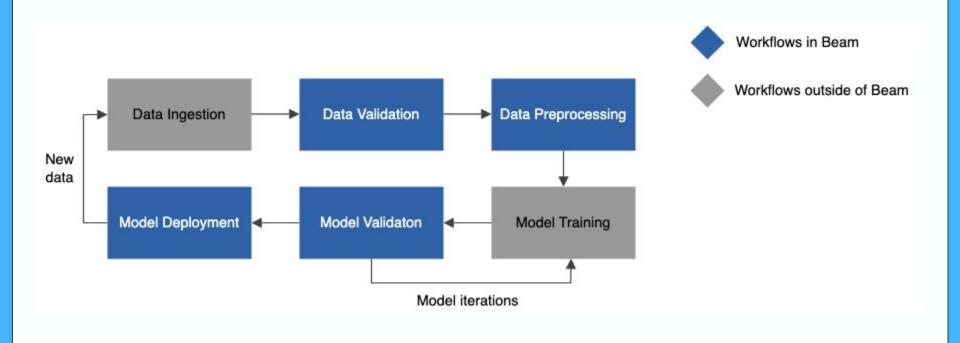
How Beam Serves Models with vLLM

Danny McCormick

Q The ML lifecycle



Inference with Beam

Challenges of Distributed Inference

- Efficiently loading models
- Batching
- Model Updates
- Using multiple models

Distributed Inference with Beam

- Beam takes care of all of this with the RunInference transform
- Loads model, batches inputs, handles updates, and plugs into DAG

RunInference(model_handler=<config>)

RunInference


```
>>  data = numpy.array([10, 40, 60, 90],
                              dtype=numpy.float32).reshape(-1, 1)
   model_handler = PytorchModelHandlerTensor(
       model_class=LinearRegression,
       model_params={'input_dim': 1, 'output_dim': 1},
       state_dict_path='gs://path/to/model.pt')
>>> with beam.Pipeline() as p:
      predictions = (
            beam.Create(data)
            beam.Map(torch.Tensor) # Map np array to Tensor
            RunInference(model_handler=model_handler)
            beam.Map(print))
```


Basic Inference Demo

colab.sandbox.google.com/github/apache/beam/blob/master/exam ples/notebooks/beam-ml/run_inference_huggingface.ipynb

What is vLLM?

Q What is vLLM?

- Open source library for serving large language models
- Takes advantage of the specific architectures of LLMs to perform optimizations a generalized framework can't
 - Examples: continuous batching, PagedAttention

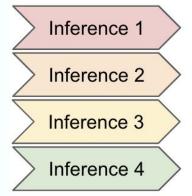
Traditional Batching

ML frameworks
 operate more
 efficiently when
 running multiple
 records in parallel

Without Batching

Inference 1 Inference 2 Inference 3 Inference 4

With Batching



Q

What if some records take longer than others?

• If some records finish early, they have to wait for the others

Q

LLMs almost always run into this

- LLMs basically perform an inference (or chain of inferences) per token
- The longer the input, the longer each inference takes (and often the more tokens that need to be generated)

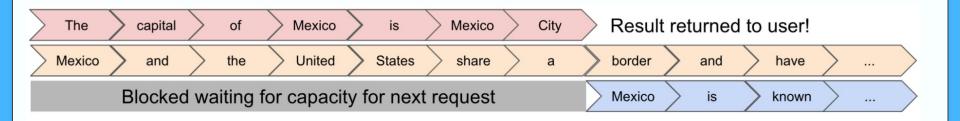
The capital of Mexico is Mexico City

Wasted compute/time

Mexico and the United States share a border and have intertwined histories, but they also have distinct cultural differences. Here are some key similarities and differences...

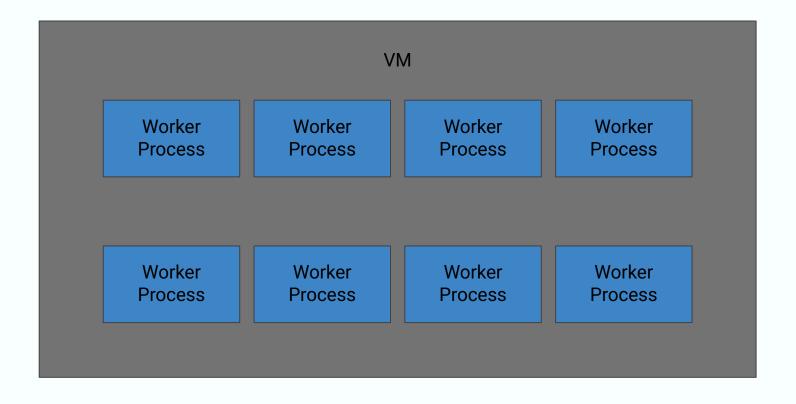
A better way: continuous batching!

Batch at the token level instead of the record level

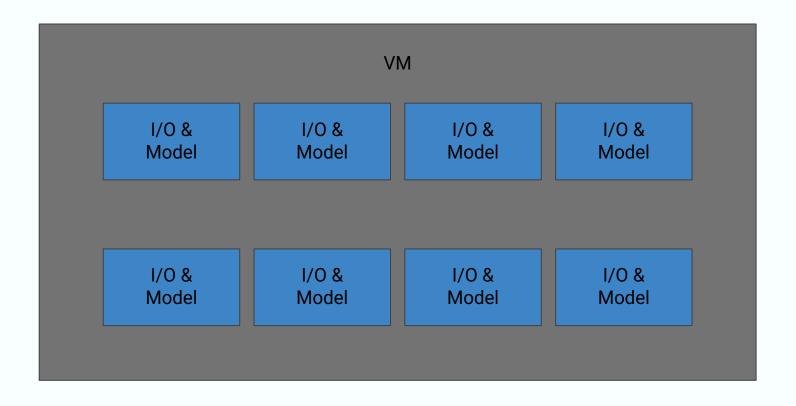


Back to Beam - how Beam does do Model Management

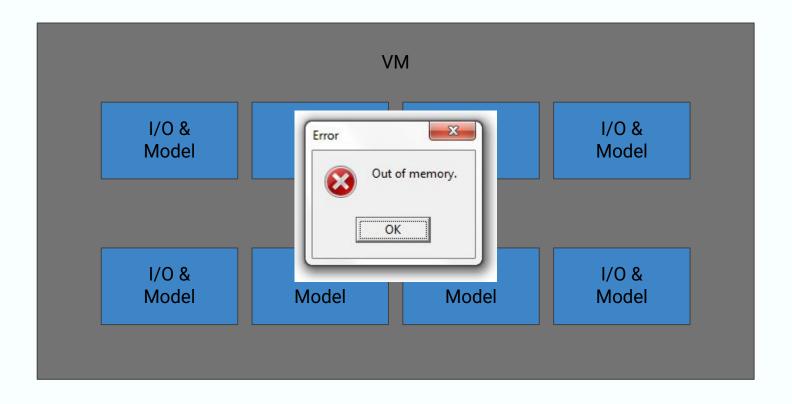
Distributed Runner Architecture



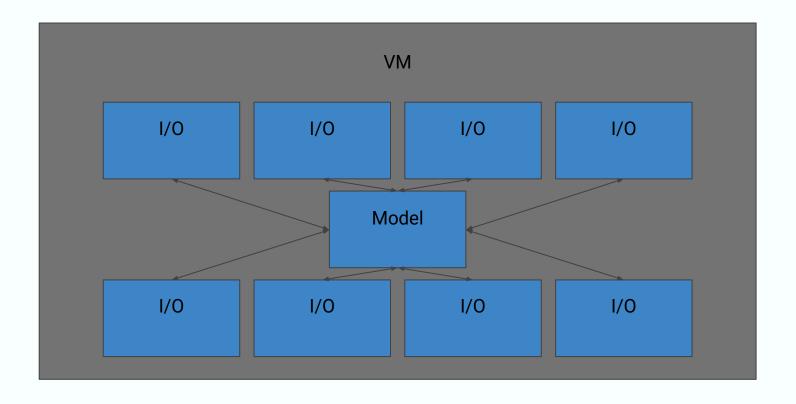
Works well for small models



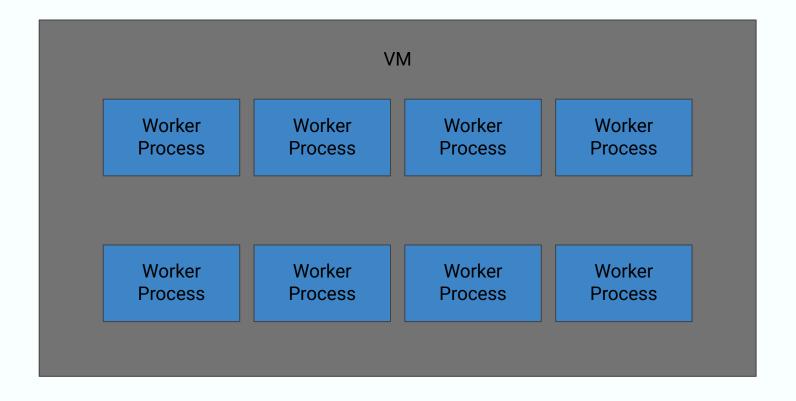
But poorly for big models



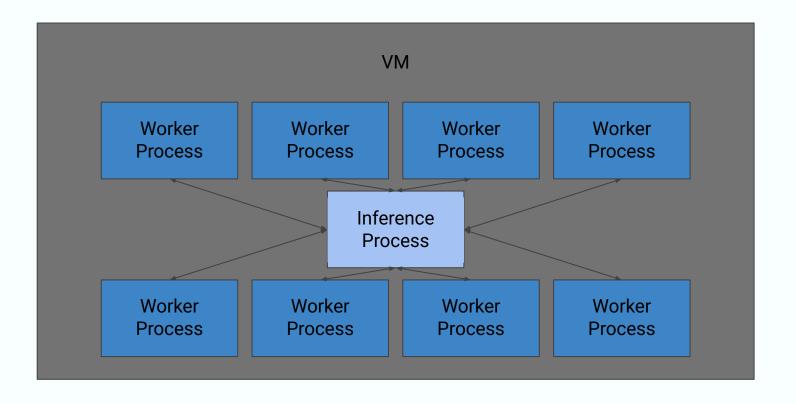
Ideal Large Model Configuration



How do we map ideal model configuration to this?

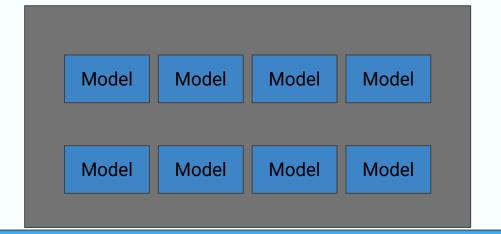


Automatically spin up a dedicated process!



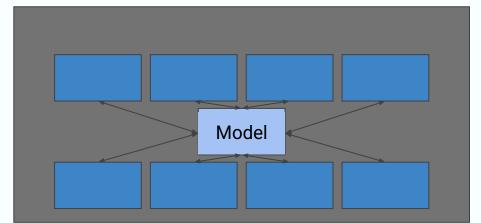
Configuration for a small model


```
>>> model_handler = PytorchModelHandlerTensor(
... model_class=LinearRegression,
... model_params={'input_dim': 1, 'output_dim': 1},
... state_dict_path='gs://path/to/model.pt')
>>> pcoll | RunInference(model_handler=model_handler)
```



Configuration for a small model

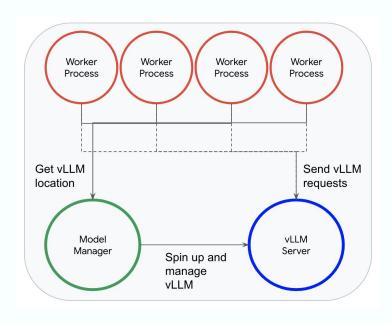

```
>>> model_handler = PytorchModelHandlerTensor(
... model_class=LinearRegression,
... large_model=True,
... model_params={'input_dim': 1, 'output_dim': 1},
... state_dict_path='gs://path/to/model.pt')
>>> pcoll | RunInference(model_handler=model_handler)
```



But how does vLLM fit in

vLLM isn't just a model, it is a standalone service

Introducing the model manager!

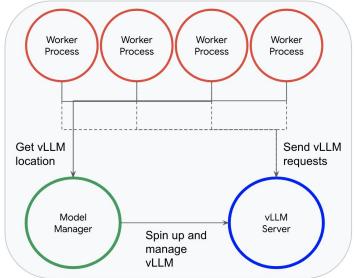


• Introducing the model manager!

- Model Manager (Inference process) now spins up a reference to vLLM server
- Workers talk to vLLM server directly

Model manager manages vLLM lifecycle

- Start up
- Dealing with stuckness/failures
- Teardown



Q Usage


```
>>> prompts = ["One cause of the console being blank is", "If
you're experiencing network issues", "If the button isn't working",
"If you can't submit your job"]
>>> mh = VLLMCompletionsModelHandler('my_favorite_llm')
>>> with beam.Pipeline() as p:
      predictions = (
            beam.Create(prompts)
            RunInference(model_handler=mh)
            beam.Map(print))
```

Q vLLM demo

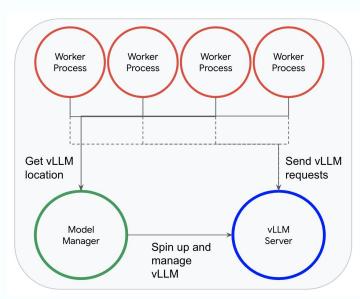
colab.sandbox.google.com/github/apache/beam/blob/master/exam ples/notebooks/beam-ml/run_inference_vllm.ipynb

Q Performance

Varies greatly model to model

 With one example pipeline using Google's Gemma 2b model, saw a 23x reduction in number of CPU/GPU core hours when switching

from pure Pytorch to vLLM



Danny Mccormick

QUESTIONS?

github.com/damccorm linkedin.com/in/danny-mccormick-a044b1103

