How Beam Serves Models
with vLLM

Danny McCormick




The ML lifecycle

’ Workflows in Beam

‘ Workflows outside of Beam

Data Validation Data Preprocessing

Model Deployment Model Validaton

Model iterations




Inference with Beam




Challenges of Distributed Inference

Efficiently loading models
Batching

Model Updates

Using multiple models




Distributed Inference with Beam

e Beam takes care of all of this with the Runinference transform

e |Loads model, batches inputs, handles updates, and plugs into
DAG

RunInference(model_handler=<config>)




Runinference

>>> data = numpy.array([10, 40, 60, 90],
dtype=numpy.float32).reshape(-1, 1)

>>> model_handler = PytorchModelHandlerTensor(
model_class=LinearRegression,
model_params={'input_dim': 1, 'output_dim': 1},
state_dict_path='gs://path/to/model.pt")

>>> with beam.Pipeline() as p:
predictions = (
P
| beam.Create(data)
| beam.Map(torch.Tensor) # Map np array to Tensor
| RunInference(model_handler=model_handler)
| beam.Map(print))




Basic Inference Demo

colab.sandbox.google.com/github/apache/beam/blob/master/exam
ples/notebooks/beam-ml/run_inference_huggingface.ipynb




h/.
>
—
—
>
2
4
O
L
=




What is vLLM?

e Open source library for serving large language models
e Takes advantage of the specific architectures of LLMs to perform

optimizations a generalized framework can't
o Examples: continuous batching, PagedAttention




Traditional Batching

o MLframeworks —\wjithout Batching
operate more

efficiently whgn > Inference 1 > Inference 2 > Inference 3 > Inference 4 >
running multiple

records in parallel \\jith Batching

> Inference 1 >
> Inference 2 >
> Inference 3 >
> Inference 4 >




What if some records take longer than others?

e |[f some records finish early, they have to wait for the others

> Inference 1

> Inference 2
> Inference 3

> Inference 4




LLMs almost always run into this

LLMSs basically perform an inference (or chain of inferences) per

token
The longer the input, the longer each inference takes (and often

the more tokens that need to be generated)

Mexico and the United States share a border and have intertwined histories, but they also have distinct cultural differences. Here are some key
similarities and differences...




A better way: continuous batching!

e Boatch ot the token level instead of the record level

> The > capital > of > Mexico > is > Mexico > City > Result returned to user!

> Mexico > and > the > United > States > share > a > border > and > have >

© Blocked waitng forcapaciy fornextrequest s > = D b




Back to Beam - how Beam
does do Model Management

NYC 2025



Distributed Runner Architecture




Works well for small models




But poorly for big models o

@ Out of memory.




|deal Large Model Configuration o




How do we map ideal model configuration to this?




Automatically spin up a dedicated process! o

Inference
Process




Configuration for a small model

>>> model_handler = PytorchModelHandlerTensor(
model_class=LinearRegression,
model_params={'input_dim': 1, 'output_dim': 1},
state_dict_path="gs://path/to/model.pt")

>>> pcoll | RunInference(model_handler=model_handler)




Configuration for a small model

>>> model_handler = PytorchModelHandlerTensor(
model_class=LinearRegression,
large_model=True,
model_params={'input_dim': 1, 'output_dim': 1},
state_dict_path="gs://path/to/model.pt")

>>> pcoll | RunInference(model_handler=model_handler)




But how does vLLM fit in

NYC 2025



vLLM isnt just a mode|, it is a standalone service

vLLM




Introducing the model manager!

Worker Worker
Process Process

Worker Worker
Process Process

Get vLLM

location
Moh

Send vLLM
requests

K:LM

Manager

Server

manage
VvLLM




Introducing the model manager!

Model Manager (Inference process) now spins up a reference to

vLLM server
Workers talk to vVLLM server directly

Model manager manages vLLM lifecycle

o Startup )
o Dealing with stuckness/failures B G ol Wil sl (i

o Teardown

Send vLLM
requests

Moh ﬂLM

Manager Spin up and Server

manage
VvLLM

Get vLLM
location




>>> prompts = ["One cause of the console being blank is", "If
you're experiencing network issues","If the button isn't working",
"If you can't submit your job"]

>>> mh = VLLMCompletionsModelHandler('my_favorite_11lm')

>>> with beam.Pipeline() as p:
predictions = (
P
| beam.Create(prompts)
| RunInference(model_handler=mh)
| beam.Map(print))




vLLM demo

colab.sandbox.google.com/github/apache/beam/blob/master/exam
ples/notebooks/beam-ml/run_inference_vllm.ipynb




Performance

Varies greatly model to model
With one example pipeline using Googles Gemma 2b model, saw a
23x reduction in number of CPU/GPU core hours when switching

Worker Worker Worker
Process Process Process

from pure Pytorch to vLLM

Get VLLM Send vLLM
location requests

Moh ﬂLM

M 1
anager Spin up and Server

manage
VvLLM




Danny Mccormick

github.com/damccorm
linkedin.com/in/danny-mccormick-a044b1103

3=AM

NYC 2025



