

NYC 2025

Integration of
Batch and Streaming data

processing with Apache Beam

Yoichi Nagai
Data Engineer @ Mercari, Inc.

BEAM SUMMIT NYC 2025#

Agenda

● Mercari Pipeline
○ What is Mercari Pipeline ?
○ Configuration management

● Stateful Processing
○ Aggregation - Beam SQL
○ DoFn State API

● Stateful Processing with External Data sources
○ Processing with Cloud Bigtable

BEAM SUMMIT NYC 2025#

Data Processing in Mercari

Mercari has adopt Microservices architecture.
Various teams develop and operate data pipelines.

● Batch processing and integration of DB data
● Near-real-time campaigns and fraud detection

However, there are also issues.

● Each team needs to develop and operate pipelines.
○ Not all application engineers are familiar with pipeline development

● Many different databases, requires a lot of pipelines for data integration.

Tool that enable easy definition and deployment of data pipeline was developed
-> Mercari Pipeline

BEAM SUMMIT NYC 2025#

What is Mercari Pipeline?

Tool to define Apache Beam pipeline in YAML or JSON

ref blog: Data operation with Cloud Spanner using Mercari Dataflow Template

system:
 system configuration
options:
 pipeline option configuration
sources:
 data source definition
transforms:
 data processing definition
sinks:
 data destination definition
failures:
 error data destination definition

Almost the same configurations as
Beam YAML

Published as OSS (mercari/pipeline)

sources/sinks
● storage
● jdbc
● bigquery
● pubsub
● etc…

transforms
● beamsql
● aggregation
● select
● bigtable
● etc…

https://medium.com/google-cloud/data-operation-with-cloud-spanner-using-mercari-dataflow-template-dcc095e9a8f3
https://github.com/mercari/pipeline

BEAM SUMMIT NYC 2025#

Mercari Pipeline System Configuration

args:
Definition to rewrite variables specified in the config
definition at runtime.
It is also possible to overwrite with specified
variables at runtime.

context:
Specify the steps to be executed in the config
definition.

imports:
Define config files separately and merge them at
runtime.

system:
 args:
 project: myproject-dev
 today: ${utils.datetime.currentDate()}
 context: daily
 imports:
 - files:
 - gs://xxx/a.yaml
 - gs://xxx/b.yaml

BEAM SUMMIT NYC 2025#

Configuration for Batch and Streaming

Set tags for each scenario in each module.

By specifying system.context
(or the context parameter at runtime),
pipeline job can be executed only with modules
that have tags matching the specified context.

Use Cases

● Training and prediction processes in ML
pipelines

● Regular execution and backfilling at the first
run or when recovering from a failure

system:
 context: train
sources:
 - name: source
 module: bigquery
 tags: [train]
 parameters:
 table: myproject.mydataset.mytable
 - name: source
 module: pubsub
 tags: [predict]
 parameters:
 format: avro
 subscription: projects/xxx/subscriptions/yyy
transforms:
 - name: features
 module: select
 tags: [train,predict]
 inputs: [source]
 parameters:
 select: …
sinks:
 - name: sink
 module: bigquery
 tags: [train]
 inputs: [features]
 - name: sink
 module: pubsub
 tags: [predict]
 inputs: [features]

BEAM SUMMIT NYC 2025#

Mercari Pipeline Resources

as MCP Server

as REST API Server

Server

Direct

Web UI

Dataflow

Develop & Debug
by Browser

Execute in Production

Develop & Debug
by Local Execution

… or other runners

MCP Host

Deploy

BEAM SUMMIT NYC 2025#

Mercari Pipeline - Server UI

Define config

Schema for each step is displayed

Validate

Local Run

Launch Dataflow Job

BEAM SUMMIT NYC 2025#

Stateful Processing Use-case in Mercari

Some campaigns require stateful streaming processing with multiple types of events

The following user events need to be integrated and evaluated
● User registration
● Campaign registration
● Listing

BEAM SUMMIT NYC 2025#

Stateful Processing - Beam SQL
WITH withAdditionalFields AS (
 SELECT
 *,
 IF(event_type="event_registration", timestamp, NULL) AS registration_time,
 IF(event_type="event_entry_campaign" AND campaign_name="CampaignA", timestamp, NULL) AS entry_time,
 IF(event_type="event_entry_campaign", campaign_name, NULL) AS campaign_name,
 IF(event_type="event_listing_item", timestamp, NULL) AS listing_time,
 IF(event_type="event_listing_item", item_id, NULL) AS listing_item_id
 FROM Inputs
),
grantedIncentive AS (
 SELECT
 user_id,
 MAX(registration_time) AS registration_time,
 MAX(entry_time) AS entry_time,
 MAX(listing_time) AS latest_listing_time,
 MAX(item_id) AS latest_listing_item_id,
 FROM withAdditionalFields
 WHERE
 event_type IN UNNEST(["event_registration", "event_entry_campaign", "event_listing_item"])
 GROUP BY user_id
 HAVING
 entry_time > registration_time
 AND latest_listing_time > entry_time
 AND TIMESTAMP_DIFF(entry_time, registration_time, HOUR) < 24
 AND TIMESTAMP_DIFF(latest_listing_time, registration_time, HOUR) BETWEEN 0 AND 23
)
SELECT
 user_id,
 COUNT(latest_listing_item_id) AS listing_count,
 CASE COUNT(latest_listing_item_id)
 WHEN 1 THEN 1000
 WHEN 2 THEN 100
 WHEN 3 THEN 100
 WHEN 4 THEN 100
 WHEN 5 THEN 100
 ELSE 0 END AS incentive
 CURRENT_TIMESTAMP() AS granted_timestamp
FROM grantedIncentive
GROUP BY user_id
HAVING
 listing_count <= 5

Retaining state as a result of
aggregation functions

Specify the windowing strategy based
on the following requirements.

● State must be retained
throughout the campaign period

● Conditions must be evaluated
each time an event is added

BEAM SUMMIT NYC 2025#

Stateful Processing - Beam SQL

Problems with retaining state as a result of simple aggregate function

● The event order is not kept
○ Difficult to evaluate order-dependent conditions

○ Batch processing does not produce the same results as streaming
■ The use of past data to confirm campaign target audiences
■ Switching the trigger settings will produce the same final result.

However, the evaluation process will become unknown.

Compare the amount purchased immediately before
PayAmount[0] > PayAmount[1]

Compare the total amount of the last three purchases
sum(PayAmount[0:3]) > 3000

BEAM SUMMIT NYC 2025#

Stateful Processing - DoFn State API

DoFn State API enables DoFn to perform stateful processing

● OrderedListState
○ State enables simple and efficient retrieval of events based on eventtime

● RequiresTimeSortedInput
○ Annotation for ensuring event time order, can be used
○ Ensure that batch processing is equivalent to streaming processing

※Be aware of performance,
● Paralleling is as difficult as CombineFn.
● Performance may decrease when using the State API with runner v2.

BEAM SUMMIT NYC 2025#

Stateful Processing - DoFn State API

Execute stateful processing according
to the config definition.

Delete old states that are no longer referenced.
Add new input with event time to the OrderedListState

Keep the oldest event time as the state.
(Supports both count and time based types)

Retrieve data between the current event time and
the oldest event time from OrderedListState.

Process in order of event time for each key using
RequiresTimeSorted Input annotation.

BEAM SUMMIT NYC 2025#

Stateful Processing - DoFn State API

Easily define and use stateful processing

● Single row processing
○ Exp: expression, cast, replace

● Window function
○ Exp: avg, sum, max, min, lag
○ Aggregate within specified range
○ Navigation func(lag) is also supported

select:
 - name: output field name
 func: function name
 range: scope of processed data
 additional_parameters…:
 parameters for each func

select:
 - name: lag_expression
 func: lag
 expression: "(longField[2] - longField[0])/(1 + longField[0])"

select:
 - name: sum_30_longFields
 func: sum
 range:
 count: 30
 expression: "longField1 * longField2"

Refer to past data values with
the current data index as 0.

BEAM SUMMIT NYC 2025#

Stateful Processing - DoFn State API
example

By working with the onnx module,
stateful features generated in real-time
can be easily used with onnx prediction models.

● Example of using time-series model Chronos-Bolt

transforms:
 - name: stateful_processing
 module: select
 inputs:
 - pubsub_source
 parameters:
 groupFields:
 - user_id
 select:
 - name: array_agg
 func: array_agg
 field: value
 range:
 count: 64
 - name: onnx_prediction
 module: onnx
 inputs:
 - stateful_processing
 parameters:
 model:
 path: gs://xxx/chronos-bolt-mini.onnx
 inferences:
 - input: stateful_processing
 mappings:
 inputs:
 context: array_agg
 outputs:
 forecasts: predictions
 select:
 - name: user_id
 - name: forecasts_4_1
 func: reshape
 field: predictions
 shape: [64,9]
 indices: [0,4]

Holds the values of the
most recent 64 value
fields as an array for

each user.

Definition of mapping between input/output
field names in the Chronos-bolt model and

input data field names.

In this Chronos-bolt model, predictions are made for 64 steps,
and nine candidates are output as fluctuations, so

post-processing is performed to extract the central prediction
for the next step.

https://github.com/mercari/pipeline/blob/main/docs/config/module/transform/onnx.md
https://huggingface.co/amazon/chronos-bolt-mini

BEAM SUMMIT NYC 2025#

Stateful Processing - External Data sources

Long-term state retention is problematic

● Some requirements need to retain state for several months
○ Some campaigns last for few months.

● Need to restore state if streaming job fails
○ Costly to keep state periodically per key

● All data for the period required to construct the state must be fed in
○ Exp: Adding new fields to change conditions during the campaign period

Instead of keeping the state in the pipeline worker process memory,
 keep it in an external data store and retrieve it as needed.

BEAM SUMMIT NYC 2025#

CRM Platform

Stateful Processing - External Data sources

microservices

Logging
Cloud Dataflow

Publisher
Pub/Sub Topic

App
GKE

Pull Subscription
Pub/Sub Sub

Event History
BigQuery

Event History
Cloud Bigtable

Processing
Cloud Dataflow

View
BigQuery

Change stream
for trigger

Query
for retrieve state

Results
Pub/Sub Topic

Publish

Backfill

BQ Subscription
Pub/Sub Sub

:

Stateful
Processing

https://cloud.google.com/bigtable/docs/change-streams-overview
https://cloud.google.com/bigtable/docs/introduction-sql

BEAM SUMMIT NYC 2025#

Stateful Processing - External Data sources

row_key buy sell

1234567#1753430662014 id=xxx,amount=30 -

1234567#1753430768338 - id=yyy,amount=150

※Need to use cache mechanism in-memory

Stateful Processor

① Insert events into data store
② Capture Change Data Record

③ Generate Query to retrieve
event history from Change Data

④ Retrieve event history

⑤ Stateful Processing

SELECT
 buy, sell”
FROM
 event_history
WHERE
 __key BETWEEN
 ”${user_id}#${prev_timestamp}”
 AND ”${user_id}#${timestamp}”

BEAM SUMMIT NYC 2025#

Stateful Processing - External Data sources
sources:
 - name: bigtable_cdc
 module: bigtable
 mode: changeDataCapture
 parameters:
 projectId: xxx
 instanceId: xxx
 tableId: event_history
 changeStream:
 changeStreamName: event_history_cdc
transforms:
 - name: stateful_processing
 module: bigtable
 inputs:
 - bigtable_cdc
 parameters:
 projectId: xxx
 instanceId: xxx
 query: |
 SELECT
 ...
 FROM
 event_history
 WHERE
 _key BETWEEN '${user_id}#${prev_timestamp}'
 AND '${user_id}#${timestamp}'
 select:
 - name: avg_32_field_A
 func: avg
 field: field_A
 range: ※ Not yet published in the OSS ver

Generate query to
retrieve targets from

fields contained in CDC
data.

Define post-processing
for query results

Stateful processing can
also be used

Instead of applying processing to the input,
build a query from the input data and
applying stateful (or single-row) processing
to the retrieved data.

BEAM SUMMIT NYC 2025#

Summary

● Mercari Pipeline
○ What is Mercari Pipeline ?
○ Configuration management

● Stateful Processing
○ Aggregation - Beam SQL
○ DoFn State API

● Stateful Processing with External Data sources
○ Processing with Cloud Bigtable

NYC 2025

QUESTIONS?

Twitter
Linkedin
Github

Yoichi Nagai

orfeon@

