
NYC 2025

Leveraging LLMs for Agentic
Workflow Orchestration with

Apache Beam YAML Pipelines

Charles Adetiloye
Lead ML Engineer

BEAM SUMMIT NYC 2025#

About the Presenter

Charles Adetiloye is a Cofounder and Lead AI
Engineer at MavenCode. He has well over 18 years of
experience building large-scale distributed
applications with extensive experience working and
consulting with several companies implementing
production grade GenAI / Agentic AI / ML platforms.

BEAM SUMMIT NYC 2025#

About MavenCode

MavenCode is an Artificial Intelligence Solutions Company with HQ in Dallas, Texas and a remote
delivery workforce across multiple time zones. We do training, product development and consulting
services with specializations in:

● Provisioning Scalable AI and ML Infrastructure - OnPrem and In the Cloud
● Development & Production Operationalization of ML platforms - OnPrem and In the Cloud
● Streaming Data Analytics and Edge IoT Model Deployment for Federated Learning
● Building out Agentic AI, LLM and ML pipelines at scale.

BEAM SUMMIT NYC 2025#

Today’s Agenda

1. Introduction to agentic workflow orchestration

2. Overview of Apache Beam YAML pipelines

3. Leveraging LLMs for pipeline automation

4. Designing modular orchestration agents

5. Future directions, and Q&A

BEAM SUMMIT NYC 2025#

1. Introduction to Agentic Workflow Orchestration

What is Agentic Workflow Orchestration all About?

Agentic workflow orchestration leverages autonomous AI agents to
dynamically coordinate, decide, and adapt across complex processes,
enabling robust, scalable, intelligent, and resilient operations under varying
conditions.

BEAM SUMMIT NYC 2025#

1. Introduction to Agentic Workflow Orchestration

Core Architecture

Key Characteristics

1. Autonomy: Agents operate independently
2. Intelligence: Context based decision making
3. Collaboration: Seamless coordination between multiple agents
4. Adaptability: Dynamic response to changing conditions &
requirements

Event or Time based
Trigger

BEAM SUMMIT NYC 2025#

1. Introduction to Agentic Workflow Orchestration

Agentic Reasoning + Task Execution

Workflow Execution
Agent

LLM Reasoning and
Planning

MemoryTool Use

Information
Retrieval

Environment / Other Agents

Key Objectives
1. Autonomous Decision-making aligned with Workflow goals
2. Coordinated multi-step task sequencing + resource allocation
3. Continuous monitoring with dynamic error recovery mechanism

BEAM SUMMIT NYC 2025#

1. Introduction to Agentic Workflow Orchestration

Agentic Execution of Apache Beam Workflow

MoE RouterAgent:
Expert Selector

Expert Agent Pool

ETL Agent
Data Pipeline

Analytics Agent
Aggregation

ML Agent
Inference / Prediction

Stream Agent
Realtime

Batch Agent
Bulk Processing

Quality Agent
Validation

Beam YAML Pipeline Jobs Execution

ETL_Pipeline.yaml
Params:

{input, output, args}

stream_proc.yaml
Params: Pub/Sub,

Windowing

ML_feature.yaml
Params: Feature Eng,

Transform

ML_Inference.yaml
Params: Model,,Batch,

validation.yaml
Params: input, x, y

Prompt Input: Was there any
system failure
in the observed pumps in
the last 12 hrs

1
2

3

4

● User submits natural language prompt describing data
processing task or requirement

● MoE Router analyzes prompt and selects appropriate expert
agents from pool

● Selected expert agents execute corresponding Apache Beam
YAML pipeline jobs automatically

● System completes data processing workflow without manual
pipeline configuration or coding

BEAM SUMMIT NYC 2025#

2. Overview of Apache Beam YAML

Apache Beam YAML Pipelines

Apache Beam YAML is a declarative syntax for describing Apache Beam pipelines using YAML
files. You can use Beam YAML to author and run a Beam pipeline without writing any code. This
approach makes data processing pipelines more accessible by eliminating the need to write code
in traditional Beam SDK languages.

BEAM SUMMIT NYC 2025#

2. Overview of Apache Beam YAML

Key Benefits of Beam YAML pipeline

● No-code Development: Create sophisticated data pipelines using only YAML configuration
without programming

● Cloud-native ready: Deploy instantly to Kubernetes / Google Dataflow with automatic scaling
and management

● Easy maintenance: Update pipeline logic by editing text files instead of recompiling code

● Self-documenting code: YAML declarative nature makes AI-generated pipelines naturally
explainable and auditable

● Template-based generation: GenAI can easily modify reusable YAML templates for different
data scenarios

BEAM SUMMIT NYC 2025#

2. Overview of Apache Beam YAML

Real-time Anomaly Detection and Preemptive Notification

● Read: Stream log data from Manufacturing Plant

● Detect Machines that are overheating

● Filter and keep the identified machines

● Send alert notifications by Machines

BEAM SUMMIT NYC 2025#

2. Overview of Apache Beam YAML

1

2

BEAM SUMMIT NYC 2025#

2. Overview of Apache Beam YAML

1

2

Local Dev:
python -m apache_beam.yaml.main \
--yaml_pipeline_file=digital_stream_pipeline.yaml \ --runner=DirectRunner

Dataflow Runner:
gcloud dataflow yaml run digital-stream-process-monitoring \
--yaml-pipeline-file=digital_stream_pipeline.yaml \ --region=us-central1 \
--max-workers=10 \ --enable-streaming-engine

BEAM SUMMIT NYC 2025#

3. Leverage LLM for Beam Pipeline Orchestration

Prompt Driven Pipeline Generation
Define transforms or trigger

pipelines in natural language on
the fly.

RAG Enhanced Context Retrieval
Fetch relevant pipeline templates,
docs, or metrics to ground LLM

decisions

Adaptive Branching Logic
Real-time rerouting of elements

when anomalies or new conditions
are detected

Schema & Code Synthesis
Auto-generate YAML/SDK snippets

for connectors, transforms, and
I/O.

Human-in-the-Loop Verification
Insert review checkpoints,

leveraging RAG to surface past best
practices

BEAM SUMMIT NYC 2025#

3. Leverage LLM for Beam Pipeline Orchestration

LLM Enriched Pipeline

Beam YAML
Pipeline
- Process Alerts
 {machine_id, temperature..}

Pubsub Topic
- Process Alerts
 JSON stream

Data Enrichment
- create incident reports
 Add equipment context

{“machine_id” : “001”,
“temp”: “420”,
“pressure”: 18.7,
“process_unit” : “Distillation”,
“alert_level”:”critical”}

Sample Alert Data

import apache_beam as beam
import requests
import json
import logging
import os

--- Configuration for your self-hosted vLLM endpoint ---
The internal URL for your vLLM server.
VLLM_ENDPOINT = "http://your-vllm-host.internal:8000/v1/chat/completions"

def enrich_with_data(element: beam.Row) -> beam.Row:
 """
 Calls a self-hosted, unsecured vLLM endpoint to enrich data.
 Uses the OpenAI-compatible API format without an API key.
 """
 # 1. Format the prompt for the model.
 prompt = (
 f"Analyze the following industrial machine data and provide a one-sentence summary "
 f"of its operational status. Data: "
 f"Machine ID: {element.machine_id}, "
 f"Temperature: {element.temperature}°C, "
 f"Pressure: {element.pressure} psi, "
 f"Vibration: {element.vibration_freq} Hz."
)

 # 2. Prepare the request headers. No 'Authorization' is needed.
 headers = { "Content-Type": "application/json" }

 # 3. Prepare the OpenAI-compatible payload.
 # The 'model' name must match the model you loaded into the vLLM server.
 payload = {
 "model": "mistralai/Mistral-7B-Instruct-v0.2", # <-- IMPORTANT: Use your loaded model's name
 "messages": [
 {"role": "system", "content": "You are an expert AI for industrial machine monitoring."},
 {"role": "user", "content": prompt}
],
 "max_tokens": 150,
 "temperature": 0.5
 }

 try:
 # 4. Make the unauthenticated API call to your local vLLM server.
 response = requests.post(VLLM_ENDPOINT, headers=headers, json=payload, timeout=30)
 response.raise_for_status()

 # 5. Parse the OpenAI-compatible response.
 api_response = response.json()
 enriched_message = api_response['choices'][0]['message']['content'].strip()

 except requests.exceptions.RequestException as e:
 logging.error(f"vLLM API call failed for machine {element.machine_id}: {e}")
 enriched_message = "Error: Could not reach self-hosted SLM."
 except (KeyError, IndexError) as e:
 logging.error(f"Failed to parse vLLM API response for machine {element.machine_id}: {e}")
 enriched_message = "Error: Invalid API response format from self-hosted SLM."

 # 6. Return the enriched Beam Row.
 return beam.Row(**element._asdict(), enriched_message=enriched_message)

BEAM SUMMIT NYC 2025#

3. Leverage LLM for Beam Pipeline Orchestration

Pipeline Enrichment + Embedding Generation

Beam YAML
Pipeline
- Process Alerts
 {machine_id, temperature..}

Pubsub Topic
- Process Alerts
 JSON stream

Data Enrichment
- create incident reports
 Add equipment context Embedding Model

Text-embedding-ada-002
Convert to vectors
1536-dimensional vector

{“machine_id” : “001”,
“temp”: “420”,
“pressure”: 18.7,
“process_unit” : “Distillation”,
“alert_level”:”critical”}

Sample Alert Data

“Critical Process Alert in Distillation Unit
exceeded safe operating temperature
(420 deg c). Potential causes: control
valve malfunction”

Generated Incident Report

Vector
DBWhat’s the status of Unit 001?

Unit 001 experienced a critical
temperature excursion (420 deg) in
the distillation unit, triggering
emergence shutdown

BEAM SUMMIT NYC 2025#

3. Leverage LLM for Beam Pipeline Orchestration1 Beam Pipeline YAML definition

2

Enrichment Python Code

BEAM SUMMIT NYC 2025#

4. Designing Modular Orchestration Agents

Prompt Input: Was there any
system failure
in the observed pumps in
the last 12 hrs

MoE RouterAgent:
Expert Selector

Agent Pool

- TOOL_REG

- CALL_TOOL

MCP Tool Server

BEAM PIPELINE CATALOG

1

2

3

4

5

6 BEAM PIPELINE REGISTRY

The router agent
determines the
Agent to handle
the task based on
user input

List of Specialized Agents

Key Advantages

● Separation of Concerns: The LLM handles high-level
reasoning, while Beam handles scalable, parallel data
execution.

● Modularity: Each transform in the YAML file is a reusable,
plug-and-play "tool" for the agent.

● Declarative & Auditable: YAML provides a human-readable
and machine-parseable record of the exact workflow that
was executed.

●

BEAM SUMMIT NYC 2025#

4. Designing Modular Orchestration Agents

BEAM SUMMIT NYC 2025#

4. Designing Modular Orchestration Agents

BEAM SUMMIT NYC 2025#

4. Designing Modular Orchestration Agents

BEAM SUMMIT NYC 2025#

7. Future Directions

● Dynamic YAML Synthesis from Natural Language: Agent translates natural language goals into
executable beam.yml files by selecting transforms from a catalog.

● Adaptive Workflow Repair via YAML Modification: Agent analyzes pipeline errors,
programmatically edits the beam.yml to fix the issue, and automatically relaunches the job.

● Declarative A/B Testing of Pipeline Logic: Agent generates multiple beam.yml versions for A/B
testing transforms, then launches another YAML pipeline to compare results.

● Automated Discovery and Integration of New Transforms: Agent automatically scans
documentation for new transforms, adding them to its catalog for use in future YAML pipelines.

NYC 2025

QUESTIONS?
https://www.linkedin.com/in/charlesadetiloye/

github.com/MavenCode

Charles Adetiloye

