
NYC 2025

Managed Transforms

Power of Beam without maintenance overheads

Chamikara Jayalath

Beam Transforms

● A computation that can be applied on your data
● Can be executed in multiple workers for parallelization
● Can be combined into composite transforms
● Executed in a well defined environment

Beam Transforms - examples

● Core transforms - ParDo, Combine, Flatten
● I/O connectors - Text I/O Read/Write, Iceberg I/O Read/Write, Kafka I/O

Read/Write
● Utility transforms - Sum, Top, Count
● Turnkey transforms - RunInference, MLTransform, Enrichment,

AnomalyDetection,
● Multi-language transforms - Python SDK Kafka Read/Write, Java SDK

RunInference

Some downsides

● Transforms APIs vary widely. Moving from one I/O connector to another
usually involves

○ Changing the transforms that produce input
○ Changing the transforms that consume output
○ Changing the transform configuration.

● Runner cannot easily re-configure transforms since transform configuration is
language specific and not well defined.

Schema-aware transforms

● Uses standard input/output types: PCollection<Row>
● Uses a standard constructor for configuration: Row
● Existing transforms can be supported by implementing the interfaces

SchemaTransformProvider and SchemaTransform.

Managed Transforms

● A new API that encapsulates schema-aware transforms.
● Primarily focuses on I/O connectors but can be generalized in the future.
● Standard API to construct transforms
● Standard API to use transforms
● Multi-language compatible

API - Java

Managed.read(SOURCE).withConfig(sourceConfig) -> PCollection<Row>

PCollection<Row> -> Managed.write(SINK).withConfig(sinkConfig)

API - Python

managed.Read(SOURCE, config=transform_config) -> PCollection<Row>

PCollection<Row> -> managed.Write(KEY, config=transform_config)

Examples
Java BigQuery I/O source

Map<String, Object> bqReadConfig = ImmutableMap.of("query", "<query>", ...);

Managed.read(Managed.BIGQUERY).withConfig(bqReadConfig)

Java Kafka I/O source

Map<String, Object> kafkaReadConfig = ImmutableMap.of("bootstrap_servers", "<server>", "topic", "<topic>",

...);

Managed.read(Managed.KAFKA).withConfig(kafkaReadConfig)

Java Kafka I/O source but with a YAML config

String kafkaReadYAMLConfig = "gs://path/to/config.yaml"

Managed.read(Managed.KAFKA).withConfigUrl(kafkaReadYAMLConfig)

Python Iceberg I/O source

iceberg_config = {"table": "<table>", ...}

managed.Read(managed.ICEBERG, config=iceberg_config)

Configuration documentation is auto-generated
https://beam.apache.org/documentation/io/managed-io/

Runner side benefits

● Runners can reconfigure transforms using the standard constructor.
● Runners can upgrade transforms using the standard constructor and the

input/output types.
● Managed transforms are guaranteed to be upgrade compatible.
● Managed transforms are guaranteed to be update compatible for streaming.
● Runner side features are currently only supported by Dataflow

○ Managed transforms work for all runners

Dataflow Implementation

Dataflow - auto upgrades

● Dataflow service automatically upgrades the supported transforms to the
latest version.

● Also upgrades the dependencies used by the transform.
● This means that critical bug fixes and vulnerability updates will be

automatically applied by the service.
● Upgrading is performed during

○ Initial job submission
○ Update via replacement (streaming jobs only)

Dataflow - transform auto re-configuration

● Dataflow may automatically re-configure the transforms to better suit the
current configuration of the overall pipeline.

● For example for BigQuery I/O sink transforms delivery semantics is
automatically configured to map the Dataflow streaming mode

○ Dataflow streaming at-least once -> BigQuery storage write API at-least-once delivery
semantics, which is less expensive and results in lower latencies.

Overall benefit

You can stay in the same Beam version and improve your pipeline and hand over
responsibility of upgrading and optimizing your transform to the Dataflow runner.

Performance - Iceberg I/O

● Managed Iceberg I/O sink backed by a Hadoop catalog deployed in GCS.
● submitted using Beam 2.61.0 and the Managed I/O sink was automatically upgraded by Dataflow to the latest

supported version
● 100 n1-standard-4 worker VMs.

Performance Kafka I/O

● A streaming pipeline that read from Google Pub/Sub and used the Managed Kafka sink transform to push messages to a Kafka
cluster hosted in GCP

● Uses 10 n1-standard-4 wokers at steady state (max 20)

Performance Kafka I/O

Resources

Transform configuration (auto-generated): https://beam.apache.org/documentation/io/managed-io/

Dataflow support: https://cloud.google.com/dataflow/docs/guides/managed-io

Java API:
https://beam.apache.org/releases/javadoc/current/org/apache/beam/sdk/managed/Managed.html

Python API:
https://beam.apache.org/releases/pydoc/current/apache_beam.transforms.managed.html#module-apache
_beam.transforms.managed

NYC 2025

Thank you

Chamikara Jayalath

