Managed Transforms

Power of Beam without maintenance overheads

Chamikara Jayalath

Beam Transforms

A computation that can be applied on your data

Can be executed in multiple workers for parallelization
Can be combined into composite transforms
Executed in a well defined environment

Beam Transforms - examples

e Core transforms - ParDo, Combine, Flatten

e |/O connectors - Text /0O Read/Write, Iceberg I/0O Read/Write, Kafka 1/0
Read/Write

e Utility transforms - Sum, Top, Count

e Turnkey transforms - Runinference, MLTransform, Enrichment,
AnomalyDetection,

e Multi-language transforms - Python SDK Kafka Read/Write, Java SDK
Runinference

Some downsides

e Transforms APlIs vary widely. Moving from one 1/O connector to another

usually involves
o Changing the transforms that produce input
o Changing the transforms that consume output
o Changing the transform configuration.

e Runner cannot easily re-configure transforms since transform configuration is
language specific and not well defined.

Schema-aware transforms

e Uses standard input/output types: PCollection<Row>

e Uses a standard constructor for configuration: Row

e Existing transforms can be supported by implementing the interfaces
SchemaTransformProvider and SchemaTransform.

Managed Transforms

A new API that encapsulates schema-aware transforms.

Primarily focuses on I/O connectors but can be generalized in the future.
Standard API to construct transforms

Standard API to use transforms

Multi-language compatible

API - Java

Managed.read(SOURCE) .withConfig(sourceConfig) -> PCollection<Row>

PCollection<Row> -> Managed.write(SINK).withConfig(sinkConfig)

API - Python

managed.Read(SOURCE, config=transform config) -> PCollection<Row>

PCollection<Row> -> managed.Write(KEY, config=transform_config)

Examples

Java BigQuery I/0 source

Map<String, Object> bgReadConfig = ImmutableMap.of("query", "<query>", ...);
Managed.read(Managed.BIGQUERY) .withConfig(bgReadConfig)

Java Kafka I/0 source

Map<String, Object> kafkaReadConfig = ImmutableMap.of("bootstrap_servers", "<server>", "topic", "<topic>",
)

Managed.read(Managed.KAFKA) .withConfig(kafkaReadConfig)

Java Kafka I/O source but with a YAML config

String kafkaReadYAMLConfig = "gs://path/to/config.yaml"
Managed.read(Managed.KAFKA) .withConfigUrl(kafkaReadYAMLConfig)

Python Iceberg I/0O source

iceberg config = {"table": "<table>", ...}
managed.Read(managed.ICEBERG, config=iceberg config)

Configuration documentation is auto-generated

https://beam.apache.org/documentation/io/managed-io/

KAFKA Write
Supported SDKs
Configuration Type Description
Available Configurations
bootstrap_servers str A list of host/port pairs to use for establishing the initial connection to the Kafka cluster. The client will make use of all servers
irrespective of which servers are specified here for bootstrapping—this list only impacts the initial hosts used to discover the full set of ¥ Configuration Details
servers. | Format: host1:port1,host2:port2,...

ICEBERG_CDC Read
format str The encoding format for the data stored in Kafka. Valid options are: RAW,JSON,AVRO,PROTO FEERER Wiite
topic SHL wa ICEBERG Read
file_descriptor_path str The path to the Protocol Buffer File Descriptor Set file. This file is used for schema definition and message serialization. R aad
message_name str The name of the Protocol Buffer message to be used for schema extraction and data conversion. ERERR Wit
producer_config_updates map(str, Alist of key-value pairs that act as configuration parameters for Kafka producers. Most of these configurations will not be needed, but if ST Wiite

str] you need to customize your Kafka producer, you may use this. See a detailed list:

https://docs.confluent. figs.html BIGQUERY Read
schema str n/a
BIGQUERY Write
Configuration Type Description
table str The bigquery table to write to. Format: [${PROJECT}]${DATASET).${TABLE}
drop Listlstr] Alistoffield names to drop from the input record before writing. Is mutually exclusive with keep' and ‘only’
keep list[str] Alistof field names to keep in the input record. All other fields are dropped before writing. Is mutually exclusive with ‘'drop’ and
‘only.

kms_key str Use this Cloud KMS key to encrypt your data
only str The name of a single record field that should be written. Is mutually exclusive with 'keep' and ‘drop’

triggering_frequency_seconds int64 Determines how often to ‘commit' progress into BigQuery. Default is every 5 seconds.

Runner side benefits

e Runners can reconfigure transforms using the standard constructor.

e Runners can upgrade transforms using the standard constructor and the
input/output types.

e Managed transforms are guaranteed to be upgrade compatible.

e Managed transforms are guaranteed to be update compatible for streaming.

e Runner side features are currently only supported by Dataflow
o Managed transforms work for all runners

Dataflow Implementation

Beam Pipeline
SDK Version

—

=2
L’

/Dataﬂow Service

2N

.

_4

Dataflow - auto upgrades

e Dataflow service automatically upgrades the supported transforms to the
latest version.

e Also upgrades the dependencies used by the transform.

e This means that critical bug fixes and vulnerability updates will be
automatically applied by the service.

e Upgrading is performed during

o Initial job submission
o Update via replacement (streaming jobs only)

Dataflow - transform auto re-configuration

e Dataflow may automatically re-configure the transforms to better suit the
current configuration of the overall pipeline.

e For example for BigQuery 1/O sink transforms delivery semantics is

automatically configured to map the Dataflow streaming mode

o Dataflow streaming at-least once -> BigQuery storage write API at-least-once delivery
semantics, which is less expensive and results in lower latencies.

Overall benefit

You can stay in the same Beam version and improve your pipeline and hand over
responsibility of upgrading and optimizing your transform to the Dataflow runner.

Performance - Iceberg |/O

Managed Iceberg I/0O sink backed by a Hadoop catalog deployed in GCS.
submitted using Beam 2.61.0 and the Managed /O sink was automatically upgraded by Dataflow to the latest
supported version

e 100 n1-standard-4 worker VMs.

12 12
10 10

Compute usage (vCPU hr)
o N [o2]
Execution time (min)
L= S R "2

1 10 50 100 1 10 50 100

Data size (Gih) Data size (GiB)

Performance Kafka I/O

e Astreaming pipeline that read from Google Pub/Sub and used the Managed Kafka sink transform to push messages to a Kafka
cluster hosted in GCP
e Uses 10 n1-standard-4 wokers at steady state (max 20)

Throughput (elements/sec)

500k/s

T T T T T T T T T T T
UTC-8 6:50 PM 7:00PM 7:10PM 7:20PM 7:30PM 7:40PM 7:50 PM 8:00PM 8:10PM 8:20PM 8:30PM

Performance Kafka I/O

System latency by stages

[]
@

0.5s
T T T T T T T T T T 0
uTC-8 6:50PM 7:00PM 7:10PM 7:20PM 7:30PM 7:40PM 7:50PM 8:00PM 8:10PM 8:20PM 8:30PM 8:40PM
Backlog seconds
6min
4min
2min
L J
0

T T T T T T T T T T T T
uUTC-8 6:50PM 7:00PM 7:10PM 7:20PM 7:30PM 7:40PM 7:50PM 8:00PM 8:10PM 8:20PM 8:30PM 8:40PM

Resources

Transform configuration (auto-generated): https://beam.apache.org/documentation/io/managed-io/

Dataflow support: https://cloud.google.com/dataflow/docs/guides/managed-io

Java API:
https://beam.apache.org/releases/javadoc/current/org/apache/beam/sdk/managed/Managed.html

Python API:
https://beam.apache.org/releases/pydoc/current/apache beam.transforms.managed.html#module-apache

beam.transforms.managed

Chamikara Jayalath

3=AM

NYC 2025

