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● Avro, Schema, and Sandwiches
● Writing Multiple Outputs
● Benefits and Drawbacks
● Code-Level Tips
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Who Am I

Peter Wagener

- Consultant @ SanusCorp
- Beam User for 3+ years
- Java/TS/Python 

Background
- It’s not your connection … I 

stutter

Geek Claim to Fame
I once received an email from Stephen 
Hawking saying the management software I 
built “... was OK”.

Likes & Dislikes

Likes:

- The Beam Java SDK
- Old Logos
- Unit Testing

Dislikes:

- Containers in Containers
- Optional fields
- Debugging Claude Code
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The ideas in this talk came from building a Community Impact Measurement Tool.  It 
answers questions like:

> “If [Company X] deployed capital to [Location Y] in a different way, how much larger or 
smaller would their overall financial impact be?”

Text and horizontal imageThe Project
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 Typical Data Flow

Web App
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The Classic Data Lake
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Quirk #1: Complex Transformations

We wanted to pre-render a lot of 
complex calculations
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Quirk #2: Pipelines Reading Data Lake
Existing data sets 
became foundational 
for other calculations
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Quirk #3:  Raw Data Users

A certain class of users wanted 
“raw” access to some data sets
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Quirk #4: Future Formats
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Need to Ingest … Need to Produce …

Parquet (Big Data Formats) Parquet (Lakehouse Access)

CSV (Common Exported Data) CSV (Raw Data Users)

Avro (Re-Entrant Pipelines) Avro (Re-Entrant Pipelines)

Protobuf? ORC? XML? JSON? Iceberg (Snapshotting, etc.)
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This is the Data Lake They Needed
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“An Avro Sandwich”

A talk from 2023 described their 
Pipelines as an “Avro Sandwich”:

“A Beginners Guide to Avro …”
        – Devon Peticolas  (2023)
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Avro Schema 
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Avro Code Generation 
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Generated Code

package example.avro;
/* ... */
public class User extends SpecificRecordBase implements SpecificRecord {
  public static final org.apache.avro.Schema SCHEMA$ = /* ... */;
  private static final BinaryMessageEncoder<User> ENCODER = /* ... */;
  private static final BinaryMessageDecoder<User> DECODER = /* ... */;

  /* ... */
  public User() {}
  public User(String name, Integer favorite_number, String favorite_color) {
    this.name = name;
    this.favorite_number = favorite_number;
    this.favorite_color = favorite_color;
  }

  public String getName() { return name; }
  public Integer getFavoriteNumber() { return favorite_number; }
  /* ... */
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Interlude:  Related Old Logos 
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Back to Our Talk:  Avro’s Benefits
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Avro Benefit:  Strong Tool Support
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Avro Benefit:  Pipeline Borders
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Avro Benefit:  Built-in Beam Schema

(also support Nested, Array, Iterable, and Map types)
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- Useful Within the Pipeline
- Enables Transforms:

- Convert.to(...)
- Join.<Row, Row>(...)
- Select.fieldNames(...)
- Group.byFieldNames(...)
- Filter.whereFieldName(...)

- Enables DoFn Features:
- @FieldAccess(...)
- @Element(...) conversion with 

matching schema

Avro Schema

- Useful Within and Outside 
the Pipeline

- Reading via AvroIO will 
automatically attach a 
Beam Schema

- Generating Avro instances 
within a pipeline may not 
automatically attach a 
Beam Schema

Beam Schema
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“Avro Sandwich Filling”

Our pipelines took the “Avro Sandwich” approach, with the nuance that 
inputs & outputs could be any supported text file format.  In practice, we 
wrote multiple copies of the outputs.

Writing Multiple Outputs
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Benefits Drawbacks

Avro is Stable & Flexible
Boring technology is a good 
thing.

Built-in Beam Schemas
This enables some great built-in 
transforms and IO support

User-Specific Formats
Different formats are good for 
different users

“Does It All Have to be Avro?”  
Anything coming in or going out 
must be described by an Avro 
Schema.

“Too Much IO … ?” 
If your pipeline is IO bound, 
duplicating IO won’t help.

“Data Overload”
If your data lake is already a 
data swamp, this will make it 
worse.
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Code Tip: Use Avro Annotations

Avro Schema become generated Java classes.  Declare Java 
annotations in your Avro Schema.  Specifically, the DefaultSchema and 
DefaultCoder.

{
  "namespace": "example.avro",
  "type": "record",
  "name": "User",
  "fields": [ /* ... */ ],
  "javaAnnotation": [
"org.apache.beam.sdk.schemas.annotations.DefaultSchema(
    org.apache.beam.sdk.extensions.avro.schemas.AvroRecordSchema.class
)", "org.apache.beam.sdk.coders.DefaultCoder(
    org.apache.beam.sdk.extensions.avro.coders.AvroCoder.class
)"
  ]
}
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Code Tip: Love the Generated Classes

Learn to love the Avro-Generated Java Classes.

● They are JavaBeans
● They support the Builder pattern
● They embed the Avro Schema 
● They (can) support immutability
● They are ugly… but readable …
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Code Tip: Alphabetize Fields

You end up writing a lot of Avro Schema files.  And certain formats in 
Beam IO (i.e. Parquet) require consistent field ordering.  Alphabetizing 
just makes your life easier.

{
  "namespace": "example.avro",
  "type": "record",
  "name": "User",
  "fields": [
     {"name": "favorite_color", "type": ["null", "string"]}
     {"name": "favorite_number",  "type": ["null", "int"]},
     {"name": "name", "type": "string"},
  ]
}
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Code Tip: Use A Library

TransBeamer Library
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Aside:  Reading Non-Trivial CSVs?  Hmm…
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Reading CSV Files via TransBeamer

// Read from s3://my-bucket/data/Movies*.csv
PCollection<Movie> movies = pipeline.apply(
    TransBeamer.newReader(
        CsvFormat.create(),      // The format to Read
        "s3://my-bucket/data",   // The location
        Movie.class              // The Avro class
    )
    .withFilePrefix("Movies")    // Filtering Files
)
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Writing Avro & Parquet via 
TransBeamer// Write to s3://my-bucket/results/ModMovies*.parquet, .avro

modifiedMovies.apply(
    TransBeamer.newWriter(
        AvroFormat.create(),      // The Format to write
        "s3://my-bucket/results", // The location (s3:, gs:)
        ModifiedMovie.class       // The Avro Class
    ).withFilePrefix("ModMovies") // A file prefix
);
modifiedMovies.apply(
    TransBeamer.newWriter(
        ParquetFormat.create(),  // Or any other format
        "gs://my-other-bucket/results",
        ModifiedMovie.class
    ).withFilePrefix("ModMovies")
);
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…Our Pipelines All Ended Up Like This
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QUESTIONS?

Peter Wagener, peter@sanuscorp.com
https://linkedin.com/in/peterjwagener

Many Formats, One Data Lake

A Beginners Guide to Avro
   – Devon Peticolas  (2023)

TransBeamer Library


