
NYC 2025

Many Formats
One Data Lake

Avro to the Rescue

BEAM SUMMIT NYC 2025#

Agenda

● Intro & Project Background
● Data Lakes & Non-Traditional Requirements
● Avro, Schema, and Sandwiches
● Writing Multiple Outputs
● Benefits and Drawbacks
● Code-Level Tips
● TransBeamer: A Library Implementation
● Questions

BEAM SUMMIT NYC 2025#

Who Am I

Peter Wagener

- Consultant @ SanusCorp
- Beam User for 3+ years
- Java/TS/Python

Background
- It’s not your connection … I

stutter

Geek Claim to Fame
I once received an email from Stephen
Hawking saying the management software I
built “... was OK”.

Likes & Dislikes

Likes:

- The Beam Java SDK
- Old Logos
- Unit Testing

Dislikes:

- Containers in Containers
- Optional fields
- Debugging Claude Code

BEAM SUMMIT NYC 2025#

The ideas in this talk came from building a Community Impact Measurement Tool. It
answers questions like:

> “If [Company X] deployed capital to [Location Y] in a different way, how much larger or
smaller would their overall financial impact be?”

Text and horizontal imageThe Project

BEAM SUMMIT NYC 2025#

 Typical Data Flow

Web App

BEAM SUMMIT NYC 2025#

The Classic Data Lake

BEAM SUMMIT NYC 2025#

Quirk #1: Complex Transformations

We wanted to pre-render a lot of
complex calculations

BEAM SUMMIT NYC 2025#

Quirk #2: Pipelines Reading Data Lake
Existing data sets
became foundational
for other calculations

BEAM SUMMIT NYC 2025#

Quirk #3: Raw Data Users

A certain class of users wanted
“raw” access to some data sets

BEAM SUMMIT NYC 2025#

Quirk #4: Future Formats

BEAM SUMMIT NYC 2025#

Need to Ingest … Need to Produce …

Parquet (Big Data Formats) Parquet (Lakehouse Access)

CSV (Common Exported Data) CSV (Raw Data Users)

Avro (Re-Entrant Pipelines) Avro (Re-Entrant Pipelines)

Protobuf? ORC? XML? JSON? Iceberg (Snapshotting, etc.)

BEAM SUMMIT NYC 2025#

This is the Data Lake They Needed

BEAM SUMMIT NYC 2025#

“An Avro Sandwich”

A talk from 2023 described their
Pipelines as an “Avro Sandwich”:

“A Beginners Guide to Avro …”
 – Devon Peticolas (2023)

BEAM SUMMIT NYC 2025#

Avro Schema

BEAM SUMMIT NYC 2025#

Avro Code Generation

BEAM SUMMIT NYC 2025#

Generated Code

package example.avro;
/* ... */
public class User extends SpecificRecordBase implements SpecificRecord {
 public static final org.apache.avro.Schema SCHEMA$ = /* ... */;
 private static final BinaryMessageEncoder<User> ENCODER = /* ... */;
 private static final BinaryMessageDecoder<User> DECODER = /* ... */;

 /* ... */
 public User() {}
 public User(String name, Integer favorite_number, String favorite_color) {
 this.name = name;
 this.favorite_number = favorite_number;
 this.favorite_color = favorite_color;
 }

 public String getName() { return name; }
 public Integer getFavoriteNumber() { return favorite_number; }
 /* ... */

BEAM SUMMIT NYC 2025#

Interlude: Related Old Logos

BEAM SUMMIT NYC 2025#

Back to Our Talk: Avro’s Benefits

BEAM SUMMIT NYC 2025#

Avro Benefit: Strong Tool Support

BEAM SUMMIT NYC 2025#

Avro Benefit: Pipeline Borders

BEAM SUMMIT NYC 2025#

Avro Benefit: Built-in Beam Schema

(also support Nested, Array, Iterable, and Map types)

BEAM SUMMIT NYC 2025#

- Useful Within the Pipeline
- Enables Transforms:

- Convert.to(...)
- Join.<Row, Row>(...)
- Select.fieldNames(...)
- Group.byFieldNames(...)
- Filter.whereFieldName(...)

- Enables DoFn Features:
- @FieldAccess(...)
- @Element(...) conversion with

matching schema

Avro Schema

- Useful Within and Outside
the Pipeline

- Reading via AvroIO will
automatically attach a
Beam Schema

- Generating Avro instances
within a pipeline may not
automatically attach a
Beam Schema

Beam Schema

BEAM SUMMIT NYC 2025#

“Avro Sandwich Filling”

Our pipelines took the “Avro Sandwich” approach, with the nuance that
inputs & outputs could be any supported text file format. In practice, we
wrote multiple copies of the outputs.

Writing Multiple Outputs

BEAM SUMMIT NYC 2025#

Benefits Drawbacks

Avro is Stable & Flexible
Boring technology is a good
thing.

Built-in Beam Schemas
This enables some great built-in
transforms and IO support

User-Specific Formats
Different formats are good for
different users

“Does It All Have to be Avro?”
Anything coming in or going out
must be described by an Avro
Schema.

“Too Much IO … ?”
If your pipeline is IO bound,
duplicating IO won’t help.

“Data Overload”
If your data lake is already a
data swamp, this will make it
worse.

BEAM SUMMIT NYC 2025#

Code Tip: Use Avro Annotations

Avro Schema become generated Java classes. Declare Java
annotations in your Avro Schema. Specifically, the DefaultSchema and
DefaultCoder.

{
 "namespace": "example.avro",
 "type": "record",
 "name": "User",
 "fields": [/* ... */],
 "javaAnnotation": [
"org.apache.beam.sdk.schemas.annotations.DefaultSchema(
 org.apache.beam.sdk.extensions.avro.schemas.AvroRecordSchema.class
)", "org.apache.beam.sdk.coders.DefaultCoder(
 org.apache.beam.sdk.extensions.avro.coders.AvroCoder.class
)"
]
}

BEAM SUMMIT NYC 2025#

Code Tip: Love the Generated Classes

Learn to love the Avro-Generated Java Classes.

● They are JavaBeans
● They support the Builder pattern
● They embed the Avro Schema
● They (can) support immutability
● They are ugly… but readable …

BEAM SUMMIT NYC 2025#

Code Tip: Alphabetize Fields

You end up writing a lot of Avro Schema files. And certain formats in
Beam IO (i.e. Parquet) require consistent field ordering. Alphabetizing
just makes your life easier.

{
 "namespace": "example.avro",
 "type": "record",
 "name": "User",
 "fields": [
 {"name": "favorite_color", "type": ["null", "string"]}
 {"name": "favorite_number", "type": ["null", "int"]},
 {"name": "name", "type": "string"},
]
}

BEAM SUMMIT NYC 2025#

Code Tip: Use A Library

TransBeamer Library

BEAM SUMMIT NYC 2025#

Aside: Reading Non-Trivial CSVs? Hmm…

BEAM SUMMIT NYC 2025#

Reading CSV Files via TransBeamer

// Read from s3://my-bucket/data/Movies*.csv
PCollection<Movie> movies = pipeline.apply(
 TransBeamer.newReader(
 CsvFormat.create(), // The format to Read
 "s3://my-bucket/data", // The location
 Movie.class // The Avro class
)
 .withFilePrefix("Movies") // Filtering Files
)

BEAM SUMMIT NYC 2025#

Writing Avro & Parquet via
TransBeamer// Write to s3://my-bucket/results/ModMovies*.parquet, .avro

modifiedMovies.apply(
 TransBeamer.newWriter(
 AvroFormat.create(), // The Format to write
 "s3://my-bucket/results", // The location (s3:, gs:)
 ModifiedMovie.class // The Avro Class
).withFilePrefix("ModMovies") // A file prefix
);
modifiedMovies.apply(
 TransBeamer.newWriter(
 ParquetFormat.create(), // Or any other format
 "gs://my-other-bucket/results",
 ModifiedMovie.class
).withFilePrefix("ModMovies")
);

BEAM SUMMIT NYC 2025#

…Our Pipelines All Ended Up Like This

NYC 2025

QUESTIONS?

Peter Wagener, peter@sanuscorp.com
https://linkedin.com/in/peterjwagener

Many Formats, One Data Lake

A Beginners Guide to Avro
 – Devon Peticolas (2023)

TransBeamer Library

