Many Formats
One Data Laoke

Avro to the Rescue

Intro & Project Background

Data Lokes & Non-Traditional Requirements
Avro, Schemao, and Sandwiches

Writing Multiple Outputs

Benefits and Drawbacks

Code-Level Tips

TransBeamer: A Library Implementation
Questions

Who Am |

Peter Wagener

Consultant @ SanusCorp
Beam User for 3+ years
Java/TS/Python

Background
It's not your connection ... |
stutter

Geek Claim to Fame

| once received an email from Stephen
Howking saying the management software |
built “.. was OK".

Likes & Dislikes

Likes:

- The Beam Java SDK
- Old Logos
- Unit Testing

Dislikes:

- Containers in Containers
- Optional fields
- Debugging Claude Code

The Project

The ideas in this talk came from building a Community Impact Measurement Tool. It
answers questions like:

> “If [Company X] deployed capital to [Location Y] in a different way, how much larger or
smaller would their overall financial impact be?”

Data Magic Happens Insights & Charts

[USA Census)\ S\ . U4
(Proprietary Data — C'. - . §
[Paid Data Sources) > g —> ;E . &
(Geolocation Data) u @
A L O] -
[Customer Data] =

Typical Data Flow

United States”
Census
eassssssssme Bureau

Google Cloud Storage

Big Query

Google Dataflow

e The Classic Data Lake

Pa rquet Google Dataflow Users

\

Parquet Data Lake e
o0

GOOg|€ Cloud Storage Data

. Lakehouse .‘

o
o0
= AW

NN

@ Goog|e . ‘
Big Query ‘

i

>
LY,

@

f

Quirk #1: Complex Transformations

Data Lake h
®
OIS
e a™ o
We wanted to pre-render a lot of .

complex calculations 5 J

BEAM SUMMIT NYC 2025

Quirk #2: Pipelines Reading Data Lake

Existing data sets
became foundational
for other calculations

\

—~—
CSV —
O ’\A;

Data Lake)

_ J

BEAM SUMMIT NYC 2025

Quirk #3: Raw Data Users

Data Lake -

. Raw Data

Users

S Y
—— AR

A certain class of users wanted
‘raw” access to some data sets

Quirk #4: Future Formats

ICEBERG

Need to Ingest ...

Parquet (Big Data Formats)

CSV (Common Exported Datq)

Avro (Re-Entrant Pipelines)

Need to Produce ...

Parquet (Laokehouse Access)

CSV (Raw Data Users)

Avro (Re-Entrant Pipelines)

Protobuf? ORC? XML? JSON?

lceberg (Snapshotting, etc.)

This is the Data Laoke They Needed
Parquet

Multiple Formats

Data Lake

Parquet
/
N N
| - e e | N N
——9

‘An Avro Sandwich” . , ,)
A Beginners Guide to Avro ...

- Devon Peticolas (2023)

A talk from 2023 described their
Pipelines as an “Avro Sandwich”;

Avro

Defining a schema

Avro schemas are defined using JSON. Schemas are composed of primitive types (null, boolean, int, long, float,
double, bytes, and string) and complex types (record, enum, array, map, union, and fixed). You can learn more about
Avro schemas and types from the specification, but for now let’s start with a simple schema example, user.avsc:

{"namespace": "example.avro",
"type": "record",
"name": "User",
"fields": [
{"name": "name", "type": "string"},
{"name": "favorite_number", "type": ["int", "null"]},
{"name": "favorite_color", "type": ["string", "null"]}

*)N Avro Code Generation
* Avro TSRO

Serializing and deserializing with code generation

Compiling the schema

Code generation allows us to automatically create classes based on our previously-defined schema. Once we have
defined the relevant classes, there is no need to use the schema directly in our programs. We use the avro-tools jar
to generate code as follows:

java -jar [path/to/avro-tools-1.11.1.jar compile schema <schema file> <destination>

This will generate the appropriate source files in a package based on the schema’s namespace in the provided
destination folder. For instance, to generate a User class in package example.avro from the schema defined above,

“& Avro

package example.avro;

/* ... %/

public class User extends SpecificRecordBase implements SpecificRecord {
public static final org.apache.avro.Schema SCHEMAS = /* ... */;
private static final BinaryMessageEncoder<User> ENCODER /* ... */;
private static final BinaryMessageDecoder<User> DECODER /[* ... */;

/* ... %/

public User() {}

public User(String name, Integer favorite_number, String favorite_color)
this.name = name;
this.favorite_number = favorite_number;
this.favorite_color = favorite_color;

}

public String getName() { return name; }
public Integer getFavoriteNumber() { return favorite_number; }
/* ... %/

Interlude: Related Old Logos

Back to Our Talk: Avro's Benefits

Avro Benefit: Strong Tool Support

e €
REDSHIFT

Cloud Pub/Sub

Amazon Glue

]
e Google OQI:O

Big Query

Amazon Athena Dataplex

Avro Benefit: Pipeline Borders

Avro Benefit: Built-in Beam Schema

6.3. Schema definition

The schema for a Pcollection defines elements of that Pcollection as an ordered list of named fields. Each field has a
name, a type, and possibly a set of user options. The type of a field can be primitive or composite. The following are the
primitive types currently supported by Beam:

Type Description

BYTE An 8-bit signed value

INT16 A 16-bit signed value

INT32 A 32-bit signed value

INT64 A 64-bit signed value

DECIMAL An arbitrary-precision decimal type
FLOAT A 32-bit IEEE 754 floating point number
DOUBLE A 64-bit IEEE 754 floating point number
STRING A string

DATETIME A timestamp represented as milliseconds since the epoch
BOOLEAN A boolean value

BYTES A raw byte array

(also support Nested, Array, lterable, and Map types)

Avro Schema

Useful Within and Outside
the Pipeline

Reading via AvrolO will
automatically attach a
Beaom Schema

Generating Avro instances
within a pipeline may not
automatically attach a
Beam Schema

Beaom Schema

Useful Within the Pipeline
Enables Transforms:;

Convert.to(...)

Join.<Row, Row>(...)
Select.fieldNames(...)
Group.byFieldNames(...)
Filter.whereFieldName(...)

Enables DoFn Features:

@FieldAccess(...)
@Element(...) conversion with
matching schema

Writing Multiple Outputs

Our pipelines took the ‘Avro Sandwich" approach, with the nuance that

inputs & outputs could be any supported text file format. In practice, we
wrote multiple copies of the outputs.

Parquet

Benefits

Avro is Stable & Flexible
Boring technology is a good
thing.

Built-in Beam Schemas

This enables some great built-in
transforms and 1O support

User-Specific Formats
Different formats are good for
different users

Draowbacks

‘Does It All Have to be Avro?”
Anything coming in or going out
must be described by an Avro
Schema.

“Too Much 1O ... 7"
If your pipeline is IO bound,
duplicating IO won't help.

‘Data Overload”

If your data loke is already a
data swamp, this will make it
worse.

Code Tip: Use Avro Annotations

Avro Schema become generated Java classes. Declare Java
annotations in your Avro Schema. Specifically, the DefaultSchema and
DefaultCoder.

"namespace”: "example.avro",
"type": "record",
"name" : "User",
"fields": [/* ... */],
"javaAnnotation": [
"org.apache.beam.sdk.schemas.annotations.DefaultSchema(
org.apache.beam.sdk.extensions.avro.schemas.AvroRecordSchema.class
)", "org.apache.beam.sdk.coders.DefaultCoder (
org.apache.beam.sdk.extensions.avro.coders.AvroCoder.class

Code Tip: Love the Generated Classes

Learn to love the Avro-Generated Java Classes.

They are JavoBeans

They support the Builder pattern
They embed the Avro Schema
They (can) support immutability

They are ugly... but readable ...

@org.apache.beam.sdk.schemas.annotations.DefaultSchema(org.apache.beam.sdk.extens
@org.apache.beam.sdk.coders.DefaultCoder(org.apache.beam.sdk.extensions.avro.code
@org.apache.avro.specific.AvroGenerated
public class StarWarsMovie extends org.apache.avro.specific.SpecificRecordBase
implements org.apache.avro.specific.SpecificRecord {
private static final long serialVersionUID = -5793972743567361116L;
public static final org.apache.avro.Schema SCHEMA$ = new org.apache.avro.Schema

Code Tip: Alphabetize Fields

You end up writing a lot of Avro Schema files. And certain formats in
Beam IO (i.e. Parquet) require consistent field ordering. Alphabetizing
just makes your life easier.

{

"namespace”: "example.avro”,

"type": "record”,

"name" : "User",

"fields": |
{"name": "favorite_color", "type": ["null", "string"]}
{"name": "favorite_number", "type": ["null", "int"]},
{"name": "name", "type": "string"},

Code Tip: Use A Library

[0 README 3[MIT license

TransBeamer
maven-central v1.2.0

The TransBeamer library provides utilities for reading and writing data of
various formats in Apache Beam pipelines, populating Avro-based
PCollections as interim values.

The goal of the library is to make it easy for Beam pipelines to read in any
text-based format into a Pcollection backed by elements described by
Avro schema. Then, when the pipeline is done processing data, make it
easy to write that data back out to a variety of formats.

Features

Multiple Format Support: Read and write CSV, Avro, Parquet, and
NDJson formats

Consistent Reading/Writing API: One API for multiple formats
Extensible Format Support: Write your own formats as needed

Avro-Centric: Uses Avro as the intermediate data format for strong
schema, coder support

TransBeamer Library

Aside: Reading Non-Trivial CSVs? Hmm...

org.apache.beam.sdk.io.csv

Class CsviO

java.lang.Object
org.apache.beam.sdk.io.csv.CsviO

public class CsvIO
extends java.lang.Object

PTransforms for reading and writing CSV files.

Reading CSV files

Reading from CSV files is not yet implemented. Please see
https://github.com/apache/beam/issues/24552.

Reading CSV Files via TransBeamer

// Read from s3://my-bucket/data/Movies*.csv
PCollection<Movie> movies = pipeline.apply(
TransBeamer .newReader (
CsvFormat.create(), // The format to Read
"s3://my-bucket/data", // The location
Movie.class // The Avro class

)

.withFilePrefix("Movies") // Filtering Files

Writing Avro & Parquet via

// Write to s3://my-bucket/results/ModMovies*.parquet, .avro
modifiedMovies.apply(
TransBeamer .newlWriter (
AvroFormat.create(), // The Format to write
"s3://my-bucket/results", // The location (s3:, gs:)
ModifiedMovie.class // The Avro Class
) .withFilePrefix("ModMovies") // A file prefix
)
modifiedMovies.apply(
TransBeamer .newlWriter (
ParquetFormat.create(), // Or any other format
"gs://my-other-bucket/results”,
ModifiedMovie.class
) .withFilePrefix("ModMovies")

) ;

Our Pipelines All Ended Up Like This

Parquet

Q U EST' O N S’? Many Formats, One Data Lake

A Beginners Guide to Avro
- Devon Peticolas (2023)

TransBeamer Library

Peter Wagener,

NYC 2025 https://linkedin.com/in/peterjwagener

