Real-Time Predictive Modeling with
MLServer, MLFlow, and Apache Beam

Devon Peticolas & Jeswanth Yadagani

Oden Technologies

Background

(@)

(@)

O

Who are we?
The problem that we're solving
A quick architecture overview

e Training

(@)

@)

(@)

O

Getting the data (Clickhouse)

Training our models (SKLearn)
Managing our models (MLFlow)
Deploying

Syncing MFlow, MLServer, and
Datoflow via GCS

Scoring
o Getting the data (PubSub)
o Tensor Forming (Beam)
o Scoring (MLServer)
o Embedded vs External Inference

After vi

o Cost Optimization
o Shared Resources

Conclusions
Q&A

Background

Devon Peticolas

Principal Engineer at Oden

One of Oden's first engineers

(responsible for many bad engineering
decisions but Beam is not one of them)

| wrote my first beam job in 2018

This is my fourth Beaom Summit!

Jeswanth Yadagani

Senior ML Engineer at Oden

Not one of Oden’s first engineers
(still feeling the pain for those other bad
engineering decisions)

| wrote my first beam job in 2020

This is my third Beam Summit!

Who is Oden Technologies?

o Oden Technologies

Think “New Relic but for manufacturing”

Real-time and historical analytics for
manufacturing

Customers in plastics, chemical, paper

We have lots of time-series data

Explore Search

GROUP BY
i Line
i State Category

i State Reason
TIME
£ Current week
SPUTBY TINE
Select
SETWEEKIDAY
i Allweek + 12am...
~ FILTERS

Allfactories
Alllines

Al products

Dden An:

Showing Sunday, February 12, 2023 12:00 AM - Monday, February 13, 2023 1:12 PM

Top Downtime Reasons by Line [l Product Performance by Runtime [l Top Scrap by Product

Timeseries

View.

View..

View..

View..

View.

View.

View..

View..

View.

RODUCT | BATBBCAL

Line
84
Compounding 1
B1

Extruder 3
Extruder 3

B4

Extruder 3
Extruder 3

Extruder 1

State Category
Unplanned Downtime
Downtime
Unplanned Downtime
Downtime
Unplanned Downtime
Downtime
Unplanned Downtime
Unplanned Downtime

Unplanned Downtime

State Reason

Machine Breakdown

Reel Change

Machine Breakdown

Machine Jam

No Operator

Quality Issue

Factory

Factory B

Factory A

Factory B

Factory A

Factory A

Factory B

Factory A

Factory A

Factory A

Product

9ABBB635

6D50D9B2

AAA9B11B

45

+6

41F9238D

R When

Vi

u

Vi

12:00am ~
12:00am
12:00am ~
12:00am ~
12:00am ~

* 12:00am

12:00am ~
12:00am ~

12:00am ~

Go To Legacy Explo

Duration @ ~

9h 17m

4h17m

3h55m

2h52m

2hdm

2hom

1h58m

1h51m

1h14m

NoMAL

498

WALL THICKNESS

AcTuAL
87.765

Stable periods (10/4/2023 - 4/4/2024)

Select point below to view s process settings RECOMMENDED.

> 90.00 - m wm

85.00 Acual — Nomina

Productized machine learning an Al

EXTRUDER 2 RATIO (PV)
39.50

[r— NOMINAL
> 434 661

— Nominal

EXTRUDER 1 ZONE 2 TEMP (SP)

o coLp op
280.00

RECOMMENDED.
> ACTUAL NowmAL
Rl 667.148 658

290.00 [130500

EXTRUDER 1 ZONE 4 TEMP (SP)

300.00 > 320.00

How Does Oden Use Beam
Streaming Batch

e Processing of “‘raw” manufacturing data e The same jobs we run in streaming but in
via MQTT (Clearblade to PubSub) a special “boatch mode” for:

Stateful and windowed transformation o Backfills
and state change detection o Late Data Processing

Delivery into Clickhouse and BigQuery o Outage Recovery

/ Clickhouse Oden Platform
: Streaming
> ¢

>._ N @ T
Pub/Sub Dataflow \
A
\ \
A 1

BigQuery .’

L]
0

[)
"0

S
Lo}
3
a®
L]

S
Batch ~~<_
Processing

Example Job: Calculated Metrics

User Has
diameter-x and diameter-y
User Wants

avg-diameter = (diameter-x + diameter-y) / 2

Calculated Metrics

New “calculated” metrics need to be
computed in real-time

Components come from different sensors
User-defined formulas stored in Postgres

New calculated metrics are treated just
like “real” metrics

diameter-y

— 7
diameter-x

~
——

20:26 20:27 20:28 20:29 20:30

—— B - Cold OD Average — C - Cold Diameter X -~ C - Cold Diameter Y

Predictive Metrics

Hypothesis J

Customers perform “off line" tests of their

product to determine quality In_line measurement can
e P 1 1]
aper predict off-line quality

Stretch until tear testing
Folding and crushing

Color spectrum testing
Particulate distribution testing

Tensile strength
Wall thickness

These measures come 40m to 2d ofter
production.

Architecture Overview

Architecture Overview Manuol

Training
MLFlow
Experiments }

. Automated
Experiments are conducted locally to fit Training Production

the appropriate model, features and Models
pipeline.

MLFlow Model
Registry

Automated Training is orchestrated via R
Airflow using Cloud Run Jobs. Models

Production
Model Versions Deploy
Cache/Config Cron Job

Apa.che

Airflow ' : L
Clients e&(s;ggé
N

Predictive

Metrics
Dataflow Job Data s

Availability

ML Server }
Monitors Inference

g

Cloud Run

Other internal
Applications

Architecture Overview Manuol

Training }
MLFlow

Experiments
. . . Automaoted
MLFlow Experiments: Stores information Training Production

about ML model training and Models
experiments along with metrics, model MLFlow Model
objects, and supporting artifacts. Registry

MLFlow Model Registry: Allows versioning ViZiié’Qéd

of production models. Production
Model Versions Deploy

Cache/Config Cron Job

mliflow

Predictive h
Metrics
Dataflow Job Data s

i Versioned
Clients o

Cloud
Storage

ML Server }

Cloud Run Cloud sQL Availability

Monitors Inference -

Other internal
Applications

Architecture Overview

periments Models Prompts

MLFlow Experiments: Stores information
about ML model training and s e

experiments along with metrics, model

© Provide Foedback [5 Add Description

Created Duration com_test maetest mapetest r2_test r2_train

© 12dmsem0 07252762 6962935, 00741904 04651A08. 07426245..

objects, and supporting artifacts.

© 12asam 0795UIL. 1056932 00720921 05678223 09183157

© 1265090 0773546 16916717 00730292 05679693 09184996

© 1265200 Ds0aEs. 16322396 007037a. OsTGI2. 0918832

14 days ago 07510045.. 17.077768.. 0.0758028.. 0.5266647.. 07303197..

MLFlow Model Registry: Allows versioning
of production models.

. 1611

14 days ago 076433.. 18.042668. 00781894 04910275 0.4168854..

16 days a0 04685394 61581401 00231587.. -0.143076.. 09036251

14 days ago 07878269 16614176.. 00720882 05784213 09178839..

16 days a0 - - : - g

@ recsys 13:01:00

15 days ago 03167856.. 17.491757.. 00713302 -0.257479.. 08662761..

@ recsys with stage 19 days ago 09019780 96894083. 00405608. 07629983 07516454

® Recsys with (second stage 19 days ago 07701108.. 13.304828.. 00529083.. 02418965.. 0834351,

19 days ago 077214%.. 18102865 00786316.. 05284083. 08522433..

OOOOOOOEOOO

@ Recsys Masg Pump - Smoothed With il jctor 2025-06-12 17:43:31 © 2daysog0 07272505, 16806817 00680123. 0.4891130.. 08607370,

o With- L ‘stage XGBoost) - 93% Train 20.
® RecSys With i 1. 19 days ago 0.7354972... 17.084797.. 0.0720070.. 0.4109494.. 0.7256048..

‘ , ° With O sctr wit Fow 203724 20 daysag0 oresess. tmassa omesesi. osecra. osama. @ SN
@ Recsys Maag Pump - Smoothed With O Ijector 2025-06-12 18:07:22 © 20days 390 07386580.. 15.400864.. 00863984.. 05050124.. 0.9414796,

® Recsys © 208y 200 01475207 11SS105. 50208329. 0199724 04271943

@ recsys 2025.06-1216.. @ 20doys 090 0806072, 13424027.. 00578847 06217379 08620314

@ RecsSys Maag Pump - Smoothed Without Ol njctor 2025-06-12 15:58:17 © a5 2g0 07690630 14875175 0063761 056 09364718,
° -with 18:36:25 © waaysag0 02263850. 17.701089.. 62150037 059865 07877930
° - 2025.06.03 164001 © 2aasag0 09221443, 20210766 00772170.. 07261845 09423257.
@ Recsys Directly on Viscosity - Vanila 2025-06-03 16:18:29 @ 29 ey 200 OS606ess. 15086028 00574579. 08332340. 09374779,
° 202505 @ 29daysago 03534608, 19.507934.. 16930235, 3160008 0.9468489..
° by Procuct 2025-06-.. @ 29 days 3g0 04308196, 2003323.. 00715433 3001281 09999516,

@ RecSys MAAG PUMP 0527 15.. @ 1monthago 01317333 16.313020.. 3.1897048.. -0.100727.. 0.6620067..
Cloud
Cloud Run Cloud sSQL
Storage

. 2025.05.23183937 @ 1monthago 07837003 11596941 00261669. 03030825. 0938443..

@ RecSys MAAG PUMP - Normalized by Product (with Feeder Recipes) 2025-05-23 18:26:30 @ Tmonthago 02936134 95611607 44464978. 0216724 09162473..
@ RecSys MAAG PUMP - Normaized by Product 2025-05-23 18:25:55 @ 1montnago : = 2 - :

@ RecSys MAAG PUMP - Normalied by Procict 2075-05-22 190925 2025-05-22 191001 © 1monnago %0826 TeBiEL. 3710 060212 097777

Architecture Overview Manuol

Training }
MLFlow

Experiments
. . Automated
Deploy Cron Job is scheduled using Training Production

Airflow Models
MLFlow Model }

Models from MLFlow Model Registry are Registry
deployed onto MLServer

Versioned
Models

Production Model Version information is s UEion

stored in GCS Model Versions Deploy
Cache/Config Cron Job

i Versioned
Clients ersione

Predictive
Metrics
Dataflow Job Data s

Availability
Monitors Inference

ML Server }

-

Other internal
Applications

Training our Models

Getting Data for Training

SELECT
AVG (metric_123_a) as metric_123_a AVG,
AVG (metric_123_b) as metric_123 b_AVG,
AVG (metric_123_c) as metric_123_c_AVG,
INTDIV (timestamp, 300) as bucket,
FROM metrics
WHERE timestamp BETWEEN 12345 AND 56890
GROUP BY bucket

aggregate
avg (metric(“a”)) as x0,
avg (metric(“b”)) as x1,
avg (metric(“c”)) as x2,
where time from 2024-01-01 to 2025-01-01

Real-Time Time-series Data and Line.id = 4123

group by bucket 5m

OQL —_—
Python
ngry Client
Service

API

timestamp,
value
FROM quality test Cache

Batch API Data AND imestanp o= 12345 (feather)

AND timestamp < 67890

Training the Model

e Data Scientists conduct EDA, feature
engineering and builds an sklearn
pipeline.

Pipeline
!&-, CollapserTransform]
I

4-, feature_transforms: Pipeline
a-, base_feature_transform: Pipeline

l a-, Ouantileclipper}
L

lé—, RecombinatingFeaturesBui‘lder]

[4~ MinMaxClipper

8-, recipe_transform: Pipeline

13—, RecombinatingFeaturesBuilder]

[4~ MinMaxClipper

!é—, None

dropping_transformer: C;»'I.unnTransfomer

}5—-, dropping_all_mass_flow_cols &-, dropping_feed_factor_cols &, remainder

R |
I a~, passthrough

i a4~ XGBRegressor

Pipeline

TrO I n I n 9 th e M Od el ‘ 4-, CollapserTransform

Data Scientists conduct EDA, feature

. . . Model schema
englneerlng Ond bUIldS On Skleorn Input and output schema for your model. Learn more .
pipeline. - %gmples features resolution

The first layer of the pipeline is designed 2= \\ /

to support time shifted features from the “seniendy Zeosen (e Doty snees e eRl)
low resolution data. B outputs (1)

- (required) Tensor (dtype: float64, shape: [-1])

Overview Model metrics ~ System metrics ~ Traces Artifacts

> W data_split model_outputs/residual_plot.png #1452

. .
[raining the Model
Path: gs://oden-production_miflow_artifact_store/27/59cea15094fc4a0aa63cd51e72723edf/3

¥ @8 model_outputs
v ® performance_metrics
[D Test_performance_metrics.csv
B Testproduet: pesformancaiiatricsicsy Residuals vs. Predicted Valuesr
[Train_performance_metrics.csv
[@ Train_product_performance_metrics.csv

Data Scientists conduct EDA, feature A

. . . [baseline_product_performance_metrics.csv
engineering and builds an sklearn A
. . [@ pn_Train_product_performance_metrics.csv
p I p e ll n e . [D pn_baseline_product_performance_metrics.csv
[ale_plots.png
[all_features_ale_plots.png

The first layer of the pipeline is designed Bl foatrenpornces pp

[in_range_table.csv

to support time shifted features from the i

[prediction_plot_insample.png

Residuals

[@ prediction_plot_outsample.png -3 @ In-Sample

lOW re S O l.U t i O n d Ot O 0 ~ Biresidual_plot.png. i @ Out-of-Sample °

' | | | H i
[top_features_ale_plots.png 45 46 47 48 49 . 5.1 0 500

¥ model_params Predicted Value Distribution

All the model experiments are logged to @ cross. el slsion

[@ train_val_test_splits.json

MLFlow along with test statistics and B datalan.confgon

[@ inference_metadata.json

supporting artifacts for peer review. BB ol

[@ pq_training.log

Metric Value
train_corr 0.9185993286254339

test_corr 0.949061721727258

train_r2 0.8408351971582717

test_r2 0.8948399662709521

Training the Model

Data Scientists conduct EDA, feature Automated Training DAG
engineering and builds an sklearn (scheduled Tst of every month)
pipeline.

X . X X Features and
The first layer of the pipeline is designed Pipeline Config

to support time shifted features from the
low resolution data.

All the model experiments are logged to { Training Job }
MLFlow along with test statistics and
supporting artifacts for peer review. Trained Model

& Artifacts

Optionally, if the model needs to be
retrained on a schedule with latest time

q] . MLFlow
series data, automated training is Experiments
orchestrated via Airflow.

Deploying our Models

Deploying our Models

Models in MLFlow Experiments are
registered to MLFlow Model Registry
along with versioning after review.

©
©
©
©
©
©
©
©
©
©

Version

Version 17

Version 16

Version 15

Version 14

Version 13

Version 12

Version 11

Version 10

Version 9

Version 8

Registered at =,
05/20/2025, 08:42:22 AM

05/19/2025, 03:08:29 PM
04/22/2025, 02:09:37 PM
02/14/2025, 11:52:12 AM
12/06/2024, 02:09:22 PM
12/06/2024, 11:48:07 AM
10/19/2024, 12:54:02 PM
10/16/2024, 11:27:55 AM
09/25/2024, 09:55:41 AM

09/09/2024, 02:51:15 PM

Deploying our Models

Models in MLFlow Experiments are
registered to MLFlow Model Registry

along with versioning after review. T ——
@ success

OdenGKEPodOperator

Deploy Job is runs every hour to ensure
o All the versioned models in Model
Registry are deployed to MLServer.
Production model version
cache/config points to the latest
version

sync-dataflow-config-for-predictive-quality
@ success
OdenGKEPodOperator

passive-check
@ success
PassiveCheckOperator

Deploying our Models

Models in MLFlow Experiments are
registered to MLFlow Model Registry

along with versioning after review. {
"input_metric_ids": [

Deploy Job is runs every hour to ensure "3e°2?934'845‘f“54di‘86°6'70"iC7C9°5f3':’
o All the versioned models in Model) PERTME AT

Registry are deployed to MLServer. “window_size_s": 300,

Production model version "step_size_s": 10,

Coche/conﬁg points to the laotest "line_id": "613cbd00-1279-420e-b@c5-dc310b9978b9",
"model_identifier": "Monitoring-Monitoring-Factory-Clearblade-SLO
"model_version": null,

"output_metric_id": "lcaee770-43b1-4813-9698-c9462eZ2d1lde3",

. "output_device_id": "b9bed864-8a25-4260-bd84-0c9%0aacdc38a",

o order of input features "output_machine_id": "602edb42-9d61-42c0-869c-3897b9d040cT"

o resolution of the data expected by "output_metric_name": "synthetic_predicted_metric"

the model }
Inference metric metadata

version

The config contains three things

Deploying our Models

Models in MLFlow Experiments are
registered to MLFlow Model Registry
along with versioning after review.

Deploy Job is runs every hour to ensure .
o All the versioned models in Model Clients
Registry are deployed to MLServer. (™ Predictive

. . Metrics
Production model version Dataflow Job Data

Vs

cache/config points to the latest ML Server }

Availability

version :
Monitors Inference

The config contains three things Other intermal
o order of input features Applications
o resolution of the data expected by
the model
o Inference metric metadata

MLServer loads all the models into
memory and serves inference requests
from clients via GRPC

Scoring out models

Predictive Metrics Beam Job

Read Metrics from Pub/Sub
(using custom multi-source-reader)

Key metrics to Predictive Metric ID(s)
they're components to

Partition key'd metrics into PCollections
by windowed size+slide

Window by window size and slide

Form tensors, score model, and form new
Metric object from score

Write new metrics to Pub/Sub
(using custom multi-sink-writer)

Read from
CD Pub/Sub

¥

@ Key by
Pred ID

Y

@ Partition
by window

@ Window Window
3m, 10s om, 30s

v Y

@ Score Score
Model Model

\/

@ Write to
Pub/Sub

Predictive Metrics Beam Job

Reading and writing to Pub/Sub is done
using a multi-source reader and writer.

This allows us to deploy this job in “batch
mode" via Options.

public static class Read<OutputT>
extends PTransform<PBegin, PCollection<OutputT>> {

public Read(ReadOptions options, Class<OutputT> outputClass) {...}

public String getName() {
return "Read " + outputClass.getSimpleName() + " from

+ options.getReadMode();

public PCollection<OutputT> expand(PBegin input) {
return switch (options.getReadMode()) {
case "PUBSUB" -> expandPubsub(input);
case "FILE" -> expandFile(input);
case "BIGQUERY" -> expandBigQuery(input);
default -> {
throw new RuntimeException("Unknown mode:

+ options.getReadMode());

public static class Write<InputT>
extends PTransform<PCollection<InputT>, PDone> {

public Write(WriteOptions options, Class<InputT> inputClass) {...}

public String getName() {
return "Write" + inputClass.getSimpleName() + " to " + options.getWriteMode();

}

public PDone expand(PCollection<AvroT> input) {
return switch (options.getWriteMode()) {
case "PUBSUB" -> expandPubsub(input);
case "FILE" -> expandFile(input);
case "FILE_WINDOWED" -> expandFileWindowed(input);
case "LOG" -> expandLog(input);
default -> {
throw new RuntimeException("Unknown option:

+ options.getWriteMode());

Read from
Pub/Sub

Write to
Pub/Sub

Predictive Metrics Beam Job

Because different models are built using
different sized windows, we split the
pipeline by window size.

This means window size must be known at

DAG read time (deploy time). Partition

by window

Recombining the collections with different
windows is a PITA so we run just as many

scoring PTransforms. Window Window

We just build the DAG in a for-loop 3m, 10s om, 30s

List<PCollection<Metric>> predictiveMetricsCollections = new ArraylList<>();
int counter = 0;
for (WindowSettings window : windows) {

TupleTag<KV<MetricKey, List<Metriquita>>> windowTag =
allMatchedWindowTagsAsList.get(counter);
PCollection<KV<MetricKey, List<Metriquita>>> windowedStream = splitStreams.get(windowTag);

PCollection<Metric> predictiveMetrics =

Predictive Metrics Beam Job

\

Some steps require reading the deployed
model config which is stored in GCS. @ Pred ID

Key by

In the past, we would: *
o Read the config on an interval using
a GenerateSequence.
o Collopse into a PCollectionView
o Load into PTransforms as side input

@ Partition
by window

But this come with problems:
o Cold-start issues
o Strange PCollectionView errors

Now our PTransforms:
o Fetch the config from GCS when
needed.
o Cachein the PTransformw/ TTL

Vizd
* A base DoFn that encapsulates the logic for fetching configuration from GCS and refreshing

. . .
Predictive Metrics Beam Job

*/

4 inheritors

public abstract static class ConfigDoFn<InputT, OutputT> extends DoFn<InputT, OutputT> {

// The static Storage handle is shared among all subclasses

Some StepS FGQUire reOding the deglo!ed private static final Storage storage = StorageOptions.getDefaultInstance().getService();
model config which is stored in GCS. protected final Strdng bucketane;

protected final String objectName;

protected TimedGCSFetcher fetcher;

|n the post, We Would: protected PredictiveMetricDefinitions definitions;
O Reod the Conﬁg On On inter\/ol using public ConfigDoFn(String bucketName, String objectName) {

this.bucketName = bucketName;

O GenerOtesequence, this.objectName = objectName;
q a . }
Collapse into a PCollectionView

public static void refreshDefinitions(

Lood into PTronSfo rms OS Side input TimedGCSFetcher fetcher, PredictiveMetricDefinitions definitions)

throws MissingConfigurationException {
fetcher.refresh();
if (definitions.neverSucceeded()) {

But this Come With pro blems: LO0G.error("No predictive metric definitions present");
. throw new MissingConfigurationException("No predictive metric configuration present");
o Cold-start issues ;
. . }
o Strange PCollectionView errors

1override
@Setup
public void setup()
NOW Our PTronsformS: throws MissingConfigurationException, TextFormat.ParseException, InvalidFormatException {
this.definitions = new PredictiveMetricDefinitions();
O Fetch the CcoO nﬁg from GCS When this.fetcher = new TimedGCSFetcher(storage, bucketName, objectName, this.definitions);

refreshDefinitions(fetcher, definitions);

needed. !
o Cachein the PTransformw/ TTL estartaundte

public void startBundle(StartBundleContext context) throws MissingConfigurationException {
refreshDefinitions(fetcher, definitions);
}
}

Scoring w/ MLServer

MLServer is an application for serving

standard inference runtimes via REST and
GRPC

Serves models over the Open Inference

Protocol standard for scoring

Lets users serve multiple models ot once @ ’
(multi-modal serving) Model <

GRPC

Why not Vertex?

e Vertex requires packaging each model in
it's own container meaning more isolation
but more resources per model.

At the time we chose MLServer, Vertex
required one vCPU per model.

Embedded Model Scoring

Pro: Low latency, no external calls, easy to
parallelize.

Pro: Data Scientists will touch Python.

Pro: Built-in Runinference transform.

Con: In our experience, Python Beam

streaming is less performant at windowing.

Con: We have lots of homegrown code for
writing Java Beam jobs.

Considered: Multi-Language pipelines but
we have no operational experience in
these.

External Scoring Service

Pro: We get to use Java.

Pro: It's easy to test and scale scoring our
models from non-beam (APIs).

Pro: We've decoupled model scoring
dependencies from pybeam dependencies.

Pro: All model scoring exists in only one
place.

Con: We risk being 10-bound.

Con: Error tracking is more difficult.

Scoring against MLServer

Scoring w/ MLServer is easy: 3. And score via GRPC

ModelInferRequest request =
'l S t 2 t l b th 8 I D ModelInferRequest.newBuilder()

O O r O u r I n p u VO u es y el r O .setModelName (definition.getModelIdentifier())
.setModelVersion(Integer.toString(definition.getModelVersion()))
.addInputs(

ModelInferRequest.InferInputTensor.newBuilder()
.setName("input-0")
// Sort the metrics by their metricID _setDatatype("FP64")
HashMap<String, List<Metriquita>> metricsByMetricId = new HashMap<>(); .addAllShape(List.of(-1L, (long) tensor.length, (long) tensor[8].length))
for (Metriquita metric : metrics) { =setContents(
InferTensorContents.newBuilder()

.addAllFpé4Contents(
metricsByMetricId.put(metric.getMetricId(), new ArraylList<>()); Arrays.stream(tensor) Stream<double[]>

if (!metricsByMetricId.containsKey(metric.getMetricId())) {

} _flatMapToDouble(Arrays: :stream) DoubleStream
metricsByMetricId.get(metric.getMetricId()).add(metric); -boxed() Stream<Double>)
.collect(Collectors.toList()))
.build())
.build())
buildQ);

ModelInferResponse resp;
2. Form our (2d) tensor: int retries - 3
StatusRuntimeException lastException = null;
while (retries > 0) {
try {
// Create a tensor from the metrics (num_metrics, window_size) resp = this.client.modelInfer(request);

double[]1[] tensor = new double[numExpectedInputMetrics][definition.getWindowSizeS()]; RELTEN mg'gem“?'ms(e 8) gettantents() . getFposContents ([0);
catch (StatusRuntimeException e) {

for (int i = 0; i < numExpectedInputMetrics; i++) { // If it's an issue with the request, don't retry.

String metricId = definition.getInputMetricIds()[i]; if (!GRPCErrorHandler.shouldRetryOnError(e)) return null;
List<Metriquita> metricList = metricsByMetricId.get(metricId); LOG.warn("Failed to score tensor, try {} of {}", RETRIES - retries + 1, RETRIES, e);

lastException = e;
for (int j = 0; j < definition.getWindowSizeS(); j++) { retries--;

tensor[i][j] = metricList.get(j).getValue(); try {
Thread.sleep((long) (SLEEP_MS * Math.pow(RETRIES - retries, 2)));
} catch (InterruptedException ex) {
Thread.currentThread() .interrupt();
}
}
}
throw lastException;

After v

Read from

Streaming Engine Optimization
v

Shrink
Due to the high dimensionality of the windowed CD Metric
join (hum_inputs * window_size / window_slide) v
Streaming Engine was the largest cost driver of Window
our models making them unprofitable for @ GCD(slide)
contracts ($1,300 to 1,800 per model per year). *
Pred ID
\
To solve this, we added two steps: Partition
by window
1. Shrink the (serialized) metric as much as —
3m, 10s om, 30s
2. Window in two-stages. + +

Score Score
Model Model

\AA’/

Write to
Pub/Sub

Streaming Engine Optimization

Previously, our Metric class:

Irrelevant UUIDs that were stored as
36-char strings.

A legacy “name” identifier.

Serialized using SchemaCoder
(which is way better than Serializable!)

We introduced a new smaller Metric class
(Metriquita) which:

e Dropped everything but the metric UUID,
value, and timestamp.

e Used a CustomCoder to tightly pack the
UUIDs as two longs.

\

CD Shrink
Metric

v

Streaming Engine Optimization

public class MetriquitaCoder extends CustomCoder<Metriquita> {
private static final MetriquitaCoder INSTANCE = new MetriquitaCoder();
private MetriquitaCoder() {}
public static MetriquitaCoder of() { return INSTANCE; }

@0verride

public void encode(Metriquita value, OutputStream outStream) throws IOException {
DataOutputStream dataOut = new DataOutputStream(outStream);
dataOut.writeLong(value.metricIdMostSigBits);
dataOut.writeLong(value.metricIdLeastSigBits);
dataOut.writeLong(value.timestampMs);
dataOut.writeDouble(value.value);

@0verride

public Metriquita decode(InputStream inStream) throws IOException {
DataInputStream dataIn = new DataInputStream(inStream);
Metriquita record = new Metriquita();
record.metricIdMostSigBits = datalIn.readLong();
record.metricIdLeastSigBits = dataIn.readLong();
record.timestampMs = dataIn.readLong();
record.value = dataln.readDouble();
return record;

SchemaCoder is: 138
SerializableCoder is: 334
SnappyCoder is: 144
MetriquitaCoder is: 32

Streaming Engine Optimization

Metriquita reduced each element by a constant

106b. But we still had to account for: ¥
e Pairing a key to each element (+38b) @ Gvé/i[?(dl(')c;v)
slide

e Adding the window to each pair (+300b) *

The clear target was to reduce the number of +
elements joined in a window once and,

unintuitively, this was accomplished by

windowing twice. —

Window 1. Pre-aggregate each metric into a list
of metrics (GCD of all possible window slides) ’ i
Window 2: Normal windowing but now with small
list-chunks of input metrics.

seconds_in_a day / window_step size s * num_input metrics * window size s * 384b

seconds_in_a day / window_step size s * num_input metrics * window size s * 384b
(& J U J
Y Y \/

Joins per day Elements to join Element size

seconds_in_a day / window step size s * num_input metrics * 384b

+
seconds_in_a_day / window_step size s * window_size s / gcd slides * num_input_metrics * 658b

seconds_in_a day / window step size s * num_input metrics * 384b

N\ J J
Y Y ~
Joins per day Elements to join Element Size
(first) (first) (first)
+ seconds_in_a day / window _step size s * window_size s / gcd slides * num_input metrics * 658b
N\ J O J
Y Y \/
Joins per day Lists to join List Size
(second)

(second) (second)

$270

$249.61
$243.79

$240
$210

$180

95% Diccovnl

on gtrea.mihg 6 ng Ine

$118.2 $115.9

109.74 1 08.58 (mode/g now f’lSO/yr)

$150

$120
$90
$60

$30

$22.78
f20.36 “___" s18.75 $19.25
- $17.21 $17.67 $17.67 $17.83 16.78__$17.53 $17.46 g1621 $16.73 S17.05 $16.11 $16.21 $16.02 $15.77
_____________f_____._s__-_____s__ss__ss_ $13.04_$13.85

$0
2025-03-15 2025-03-18 2025-03-21 2025-03-24 2025-03-27 2025-03-30 2025-04-02 2025-04-05 2025-04-08 2025-04-11 2025-04-14 2025-04-17 2025-04-20 2025-04-23 2025-04-26 2025-04-29 2025-05-02 2025-05-05 2025-05-08 2025-05-11

B Cloud Dataflow;Streaming data processed for lowa Cloud Dataflow;vCPU Time Streaming South Carolina [l Cloud Dataflow;RAM Time Streaming South Carolina [l Cloud Dataflow;Local Disk Time PD Standard South Carolina

M Cloud Dataflow;Streaming data processed for South Carolina Jll Cloud Dataflow;vCPU Time Streaming lowa Cloud Dataflow;RAM Time Streaming lowa Cloud Dataflow;Local Disk Time PD S(anda./a n

Shared Inference Resources

e At Oden, we have a large number of tiny
models. Resource sharing by models is
crucial for cost scaling reasons.

o 4 cpu cores and 4 gigs of memory
o 150+ production sklearn pipelines
o 350 reg/minute with <200ms latency

Shared Inference Resources

At Oden, we have a large number of tiny
models. Resource sharing by models is
crucial for cost scaling reasons.

o 4 cpu cores and 4 gigs of memory

o 150+ production sklearn pipelines

o 350 reg/minute with <200ms latency

But we are restricted to a single python
runtimell

Shared Inference Resources

At Oden, we have a large number of tiny
models. Resource sharing by models is
crucial for cost scaling reasons.

o 4 cpu cores and 4 gigs of memory

o 150+ production sklearn pipelines

o 350 reg/minute with <200ms latency

But we are restricted to a single python
runtimell
o Changes in code for new models
may break already existing models
Python upgrade needed careful
planning and gymnastics
m Perform a surgery OR
m Retrain models in new runtime

Python 3.12.9 Upgrade Postmortem

Owned by Devon Peticolas -
5D (o ececvoron 2035« minreas - 215 oo viewss
High-Level Summary

On April 22nd, the Data Science team upgraded all science-repo Python services from 3.9.21to
3.12.9 to unblock the Copilot Squad’s MCP Server work. Due to the way Predictive Quality and
Recysys models are deployed, this resulted in a 35-minute total outage in Predictive Quality and a
26-minute partial outage in Recysys. As of April 22nd, no other issues have been identified.

Timeline

Lead-Up

1. There is a large amount of unresolved work on deploying major dependency changes to existing
models hosted in MLServer. This issue has been identified as the cause of two incidents and was
one of the driving, but ultimately unresolved, issues identified in our 2024 Q4 Code Yellow. As of
Q2 2025, we believe that the beginnings of a solution are evident, but the work has not been
prioritized.

GCS MLFlow Store

VERSION 2: Model Compatible
with Pythion 3,12 and Python 3.9

Python 3.9 Environment Python 3.12 Environment

®

Model trained in 3.9 Model trained in 3.9 (Now
Loaded in 3.12 Env)

Model trained in 3.9 (Now
Loaded in 3.12 Env)

INn Conclusion

Takeaways

Streaming Beam works well forming and scoring windows of datal

o We needed to pay close attention to Streaming Engine costs on Dataflow.

o It's worth testing your encoders!

o Syncing MLServer and Dataflow via a simple JSON config has been easier than anticipated!
Using an external service for scoring was a good calll

o 1O was never an issue.

o Opened up non-beam inference capabilities.
We're still struggling to balance cost vs runtime.

o Asingle inference server and runtime has saved us money.

o Shared dependencies makes model deployment stressful.

MLFlow and MLServer have allowed easy experimentation and deployment by Data Scientists.

Where are we going?

Many models perform well in real-timel
95% correlation, >60% R2

RING CRUSH / PLYBOND MOISTURE MACHINE SPEED

TOTAL HPDT MACHINE SPEED

[o - o
Some offline quality tests are harder to rpe
model than others. S ——
Large inconsistencies in the models
between products being manufactured. I —
We are seeing success embedding our
quality predictions in bigger systems.

poem— m— e

Now that we've built this infrastructure we
can explore other predictive models such
as predicting future in-line metrics.

Devon and Jeswanth

3=AM devon@oden.io
NYC 2025 jeswanth.yadagani@oden.io

