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Background

How we got here
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Devon Peticolas Jeswanth Yadagani

Principal Engineer at Oden

One of Oden’s first engineers
(responsible for many bad engineering 
decisions but Beam is not one of them)

I wrote my first beam job in 2018

This is my fourth Beam Summit!

Senior ML Engineer at Oden

Not one of Oden’s first engineers
(still feeling the pain for those other bad 
engineering decisions)

I wrote my first beam job in 2020

This is my third Beam Summit!
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Who is Oden Technologies?

      Oden Technologies

● Think “New Relic but for manufacturing”

● Real-time and historical analytics for 
manufacturing

● Customers in plastics, chemical, paper

● We have lots of time-series data

● Productized machine learning an AI
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  How Does Oden Use Beam
Streaming

● Processing of “raw” manufacturing data 
via MQTT (Clearblade to PubSub)

● Stateful and windowed transformation 
and state change detection

● Delivery into Clickhouse and BigQuery

PLC

Pub/Sub Dataflow

BigQuery

Clickhouse Oden Platform

Batch

● The same jobs we run in streaming but in 
a special “batch mode” for:

○ Backfills

○ Late Data Processing

○ Outage Recovery

Batch 
Processing

Streaming StreamingMQTT

Clearblade
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Example Job: Calculated Metrics

User Has

diameter-x and diameter-y

User Wants

avg-diameter = (diameter-x + diameter-y) / 2

Calculated Metrics

● New “calculated” metrics need to be 
computed in real-time

● Components come from different sensors

● User-defined formulas stored in Postgres

● New calculated metrics are treated just 
like “real” metrics

diameter-y

diameter-x
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Predictive Metrics

Customers perform “off line” tests of their 
product to determine quality

● Paper
○ Stretch until tear testing
○ Folding and crushing

● Ink
○ Color spectrum testing
○ Particulate distribution testing

● Wire
○ Tensile strength
○ Wall thickness

These measures come 40m to 2d after 
production.

Hypothesis
In-line measurement can 
predict off-line quality



Architecture Overview
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Clients

Architecture Overview

● Experiments are conducted locally to fit 
the appropriate model, features and 
pipeline.

● Automated Training is orchestrated via 
Airflow using Cloud Run Jobs.

Production 
Models

Manual 
Training

Automated 
Training

MLFlow 
Experiments

MLFlow Model 
Registry

Models

Deploy 
Cron Job

Versioned 
Models

ML Server

Versioned 
Models

Production 
Model Versions 
Cache/Config

Predictive 
Metrics 

Dataflow Job

Availability 
Monitors

Other internal 
Applications

Data

InferenceCloud Run
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Clients

Architecture Overview

● MLFlow Experiments: Stores information 
about ML model training and 
experiments along with metrics, model 
objects, and supporting artifacts.

● MLFlow Model Registry: Allows versioning 
of production models.

Production 
Models

Manual 
Training

Automated 
Training

MLFlow 
Experiments

MLFlow Model 
Registry

Models

Deploy 
Cron Job

Versioned 
Models

ML Server

Versioned 
Models

Production 
Model Versions 
Cache/Config

Predictive 
Metrics 

Dataflow Job

Availability 
Monitors

Other internal 
Applications

Data

Inference

Cloud 
Storage Cloud SQLCloud Run



BEAM SUMMIT NYC 2025

Architecture Overview

● MLFlow Experiments: Stores information 
about ML model training and 
experiments along with metrics, model 
objects, and supporting artifacts.

● MLFlow Model Registry: Allows versioning 
of production models.

Cloud 
Storage Cloud SQLCloud Run
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Clients

Architecture Overview

● Deploy Cron Job is scheduled using 
Airflow

● Models from MLFlow Model Registry are 
deployed onto MLServer

● Production Model Version information is 
stored in GCS

Production 
Models

Manual 
Training

Automated 
Training

MLFlow 
Experiments

MLFlow Model 
Registry

Models

Deploy 
Cron Job

Versioned 
Models

ML Server

Versioned 
Models

Production 
Model Versions 
Cache/Config

Predictive 
Metrics 

Dataflow Job

Availability 
Monitors

Other internal 
Applications

Data

Inference



Training our Models

With SKLearn and MLFlow
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Getting the Training DataGetting Data for Training

API

Real-Time Time-series Data

Batch API Data

OQL 
Query 

Service

aggregate
  avg(metric(“a”)) as x0,
  avg(metric(“b”)) as x1,
  avg(metric(“c”)) as x2,
where time from 2024-01-01 to 2025-01-01
and line.id = ‘123’
group by bucket 5m

SELECT
  AVG(metric_123_a) as metric_123_a_AVG,
  AVG(metric_123_b) as metric_123_b_AVG,
  AVG(metric_123_c) as metric_123_c_AVG,
  INTDIV(timestamp, 300) as bucket,
FROM metrics
WHERE timestamp BETWEEN 12345 AND 56890
GROUP BY bucket

SELECT
  timestamp,
  value
FROM quality_test
WHERE line_id = 123
AND timestamp >= 12345
AND timestamp <  67890

Python
Client

Cache
(feather)
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● Data Scientists conduct EDA, feature 
engineering and builds an sklearn 
pipeline.

Training the Model
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● Data Scientists conduct EDA, feature 
engineering and builds an sklearn 
pipeline.

● The first layer of the pipeline is designed 
to support time shifted features from the 
low resolution data.

Training the Model

features resolutionsamples
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● Data Scientists conduct EDA, feature 
engineering and builds an sklearn 
pipeline.

● The first layer of the pipeline is designed 
to support time shifted features from the 
low resolution data.

● All the model experiments are logged to 
MLFlow along with test statistics and 
supporting artifacts for peer review.

Training the Model
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● Data Scientists conduct EDA, feature 
engineering and builds an sklearn 
pipeline.

● The first layer of the pipeline is designed 
to support time shifted features from the 
low resolution data.

● All the model experiments are logged to 
MLFlow along with test statistics and 
supporting artifacts for peer review.

● Optionally, if the model needs to be 
retrained on a schedule with latest time 
series data, automated training is 
orchestrated via Airflow.

Training the Model

Automated Training DAG
(scheduled 1st of every month)

MLFlow
Experiments

Training Job

Features and 
Pipeline ConfigData

Trained Model 
& Artifacts



Deploying our Models

w/ MLFlow, MLServer, and a GCS config
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● Models in MLFlow Experiments are 
registered to MLFlow Model Registry 
along with versioning after review.

Deploying our Models
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● Models in MLFlow Experiments are 
registered to MLFlow Model Registry 
along with versioning after review.

● Deploy Job is runs every hour to ensure
○ All the versioned models in Model 

Registry are deployed to MLServer.
○ Production model version 

cache/config points to the latest 
version

Deploying our Models
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● Models in MLFlow Experiments are 
registered to MLFlow Model Registry 
along with versioning after review.

● Deploy Job is runs every hour to ensure
○ All the versioned models in Model 

Registry are deployed to MLServer.
○ Production model version 

cache/config points to the latest 
version

● The config contains three things
○ order of input features
○ resolution of the data expected by 

the model
○ Inference metric metadata

Deploying our Models
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● Models in MLFlow Experiments are 
registered to MLFlow Model Registry 
along with versioning after review.

● Deploy Job is runs every hour to ensure
○ All the versioned models in Model 

Registry are deployed to MLServer.
○ Production model version 

cache/config points to the latest 
version

● The config contains three things
○ order of input features
○ resolution of the data expected by 

the model
○ Inference metric metadata

● MLServer loads all the models into 
memory and serves inference requests 
from clients via GRPC

Deploying our Models

Clients

ML Server

Data

Inference

Predictive 
Metrics 

Dataflow Job

Availability 
Monitors

Other internal 
Applications



Scoring out models

With Apache Beam and MLServer
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1. Read Metrics from Pub/Sub
(using custom multi-source-reader)

2. Key metrics to Predictive Metric ID(s) 
they’re components to

3. Partition key’d metrics into PCollections 
by windowed size+slide

4. Window by window size and slide

5. Form tensors, score model, and form new 
Metric object from score

6. Write new metrics to Pub/Sub
(using custom multi-sink-writer)

Predictive Metrics Beam Job Read from 
Pub/Sub

Key by 
Pred ID

Partition 
by window

Window
3m, 10s

Window
5m, 30s

Score 
Model

Score 
Model

Write to 
Pub/Sub
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● Reading and writing to Pub/Sub is done 
using a multi-source reader and writer.

● This allows us to deploy this job in “batch 
mode” via Options.

Predictive Metrics Beam Job Read from 
Pub/Sub

Key by 
Pred ID

Partition 
by window

Window
3m, 10s

Window
5m, 30s

Score 
Model

Score 
Model

Write to 
Pub/Sub

public static class Read<OutputT>
  extends PTransform<PBegin, PCollection<OutputT>> {

  public Read(ReadOptions options, Class<OutputT> outputClass) {...}

  public String getName() {
    return "Read " + outputClass.getSimpleName() + " from " + options.getReadMode();
  }
  ...

  public PCollection<OutputT> expand(PBegin input) {
    return switch (options.getReadMode()) {
      case "PUBSUB" -> expandPubsub(input);
      case "FILE" -> expandFile(input);
      case "BIGQUERY" -> expandBigQuery(input);
      default -> {
        throw new RuntimeException("Unknown mode: " + options.getReadMode());
...

public static class Write<InputT> 
  extends PTransform<PCollection<InputT>, PDone> {

  public Write(WriteOptions options, Class<InputT> inputClass) {...}

  public String getName() {
    return "Write" + inputClass.getSimpleName() + " to " + options.getWriteMode();
  }
  ...

  public PDone expand(PCollection<AvroT> input) {
    return switch (options.getWriteMode()) {
      case "PUBSUB" -> expandPubsub(input);
      case "FILE" -> expandFile(input);
      case "FILE_WINDOWED" -> expandFileWindowed(input);
      case "LOG" -> expandLog(input);
      default -> {
        throw new RuntimeException("Unknown option: " + options.getWriteMode());
...
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Window
1m, 5s

Score 
Model

● Because different models are built using 
different sized windows, we split the 
pipeline by window size.

● This means window size must be known at 
DAG read time (deploy time).

● Recombining the collections with different 
windows is a PITA so we run just as many 
scoring PTransforms.

● We just build the DAG in a for-loop

Predictive Metrics Beam Job Read from 
Pub/Sub

Key by 
Pred ID

Partition 
by window

Window
3m, 10s

Window
5m, 30s

Score 
Model

Score 
Model

Write to 
Pub/Sub

Window
10m, 60s

Score 
Model



BEAM SUMMIT NYC 2025

● Some steps require reading the deployed 
model config which is stored in GCS.

● In the past, we would:
○ Read the config on an interval using 

a GenerateSequence.
○ Collapse into a PCollectionView
○ Load into PTransforms as side input

● But this came with problems:
○ Cold-start issues
○ Strange PCollectionView errors

● Now our PTransforms:
○ Fetch the config from GCS when 

needed.
○ Cache in the PTransform w/ TTL

Predictive Metrics Beam Job Read from 
Pub/Sub

Key by 
Pred ID

Partition 
by window

Window
3m, 10s

Window
5m, 30s

Score 
Model

Score 
Model

Write to 
Pub/Sub
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● Some steps require reading the deployed 
model config which is stored in GCS.

● In the past, we would:
○ Read the config on an interval using 

a GenerateSequence.
○ Collapse into a PCollectionView
○ Load into PTransforms as side input

● But this came with problems:
○ Cold-start issues
○ Strange PCollectionView errors

● Now our PTransforms:
○ Fetch the config from GCS when 

needed.
○ Cache in the PTransform w/ TTL

Predictive Metrics Beam Job
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● MLServer is an application for serving 
standard inference runtimes via REST and 
GRPC

● Serves models over the Open Inference 
Protocol standard for scoring

● Lets users serve multiple models at once 
(multi-modal serving)

Why not Vertex?

● Vertex requires packaging each model in 
it’s own container meaning more isolation 
but more resources per model.

● At the time we chose MLServer, Vertex 
required one vCPU per model.

Scoring w/ MLServer

Score 
Model

GRPC



BEAM SUMMIT NYC 2025#

● Pro: Low latency, no external calls, easy to 
parallelize.

● Pro: Data Scientists will touch Python.

● Pro: Built-in RunInference transform.

● Con: In our experience, Python Beam 
streaming is less performant at windowing.

● Con: We have lots of homegrown code for 
writing Java Beam jobs.

● Considered: Multi-Language pipelines but 
we have no operational experience in 
these.

Embedded Model Scoring External Scoring Service

● Pro: We get to use Java.

● Pro: It’s easy to test and scale scoring our 
models from non-beam (APIs).

● Pro: We’ve decoupled model scoring 
dependencies from pybeam dependencies.

● Pro: All model scoring exists in only one 
place.

● Con: We risk being IO-bound.

● Con: Error tracking is more difficult.
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Scoring w/ MLServer is easy:

1. Sort our input values by their ID.

2. Form our (2d) tensor:

Predictive Metrics Beam Job

3. And score via GRPC

Scoring against MLServer



After v1

Some interesting challenges along the way.
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Due to the high dimensionality of the windowed 
join (num_inputs * window_size / window_slide) 
Streaming Engine was the largest cost driver of 
our models making them unprofitable for 
contracts ($1,300 to 1,800 per model per year).

To solve this, we added two steps:

1. Shrink the (serialized) metric as much as 
possible.

2. Window in two-stages.

Streaming Engine Optimization
Read from 
Pub/Sub

Key by 
Pred ID

Partition 
by window

Window
3m, 10s

Window
5m, 30s

Score 
Model

Score 
Model

Write to 
Pub/Sub

Shrink 
Metric

Window
GCD(slide)
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Previously, our Metric class:

● Irrelevant UUIDs that were stored as 
36-char strings.

● A legacy “name” identifier.

● Serialized using SchemaCoder
(which is way better than Serializable!)

We introduced a new smaller Metric class 
(Metriquita) which:

● Dropped everything but the metric UUID, 
value, and timestamp.

● Used a CustomCoder to tightly pack the 
UUIDs as two longs.

Streaming Engine Optimization
Read from 
Pub/Sub

Key by 
Pred ID

Partition 
by window

Window
3m, 10s

Window
5m, 30s

Score 
Model

Score 
Model

Write to 
Pub/Sub

Shrink 
Metric

Window
GCD(slide)
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Streaming Engine Optimization
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Metriquita reduced each element by a constant 
106b. But we still had to account for:

● Pairing a key to each element (+38b)

● Adding the window to each pair (+300b)

The clear target was to reduce the number of 
elements joined in a window once and, 
unintuitively, this was accomplished by 
windowing twice.

Window 1: Pre-aggregate each metric into a list 
of metrics (GCD of all possible window slides)

Window 2: Normal windowing but now with small 
list-chunks of input metrics.

Streaming Engine Optimization
Read from 
Pub/Sub

Key by 
Pred ID

Partition 
by window

Window
3m, 10s

Window
5m, 30s

Score 
Model

Score 
Model

Write to 
Pub/Sub

Shrink 
Metric

Window
GCD(slide)

Window
3m, 10s

Window
5m, 30s



seconds_in_a_day / window_step_size_s * num_input_metrics * window_size_s * 384b



seconds_in_a_day / window_step_size_s * num_input_metrics * window_size_s * 384b

Elements to join Element sizeJoins per day



seconds_in_a_day / window_step_size_s * num_input_metrics * 384b

+
seconds_in_a_day / window_step_size_s * window_size_s / gcd_slides * num_input_metrics * 658b



seconds_in_a_day / window_step_size_s * num_input_metrics * 384b

+ seconds_in_a_day / window_step_size_s * window_size_s / gcd_slides * num_input_metrics * 658b

Joins per day
(first)

Elements to join
(first)

Element Size
(first)

Joins per day
(second)

Lists to join
(second)

List Size
(second)



95% Discount
on Streaming Engine

(models now $180/yr)
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● At Oden, we have a large number of tiny 
models. Resource sharing by models is 
crucial for cost scaling reasons.

○ 4 cpu cores and 4 gigs of memory
○ 150+ production sklearn pipelines
○ 350 req/minute with <200ms latency

Shared Inference Resources
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● At Oden, we have a large number of tiny 
models. Resource sharing by models is 
crucial for cost scaling reasons.

○ 4 cpu cores and 4 gigs of memory
○ 150+ production sklearn pipelines
○ 350 req/minute with <200ms latency

● But we are restricted to a single python 
runtime!!

Shared Inference Resources
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● At Oden, we have a large number of tiny 
models. Resource sharing by models is 
crucial for cost scaling reasons.

○ 4 cpu cores and 4 gigs of memory
○ 150+ production sklearn pipelines
○ 350 req/minute with <200ms latency

● But we are restricted to a single python 
runtime!!

○ Changes in code for new models 
may break already existing models

○ Python upgrade needed careful 
planning and gymnastics

■ Perform a surgery OR
■ Retrain models in new runtime

Shared Inference Resources



In Conclusion
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Takeaways

● Streaming Beam works well forming and scoring windows of data!

○ We needed to pay close attention to Streaming Engine costs on Dataflow.

○ It’s worth testing your encoders!

○ Syncing MLServer and Dataflow via a simple JSON config has been easier than anticipated!

● Using an external service for scoring was a good call!

○ IO was never an issue.

○ Opened up non-beam inference capabilities.

● We’re still struggling to balance cost vs runtime.

○ A single inference server and runtime has saved us money.

○ Shared dependencies makes model deployment stressful. 

● MLFlow and MLServer have allowed easy experimentation and deployment by Data Scientists.
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Where are we going?

● Many models perform well in real-time!
95% correlation, >60% R2

● Some offline quality tests are harder to 
model than others.

● Large inconsistencies in the models 
between products being manufactured.

● We are seeing success embedding our 
quality predictions in bigger systems.

● Now that we’ve built this infrastructure we 
can explore other predictive models such 
as predicting future in-line metrics.
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QUESTIONS?

devon@oden.io
jeswanth.yadagani@oden.io

Devon and Jeswanth


