
NYC 2025

Real-Time Predictive Modeling with
MLServer, MLFlow, and Apache Beam

Devon Peticolas & Jeswanth Yadagani

Oden Technologies

BEAM SUMMIT NYC 2025#

Agenda

● Background
○ Who are we?
○ The problem that we’re solving
○ A quick architecture overview

● Training
○ Getting the data (Clickhouse)
○ Training our models (SKLearn)
○ Managing our models (MLFlow)

● Deploying
○ Syncing MFlow, MLServer, and

Dataflow via GCS

● Scoring
○ Getting the data (PubSub)
○ Tensor Forming (Beam)
○ Scoring (MLServer)
○ Embedded vs External Inference

● After v1
○ Cost Optimization
○ Shared Resources

● Conclusions
● Q&A

Background

How we got here

BEAM SUMMIT NYC 2025#

Devon Peticolas Jeswanth Yadagani

Principal Engineer at Oden

One of Oden’s first engineers
(responsible for many bad engineering
decisions but Beam is not one of them)

I wrote my first beam job in 2018

This is my fourth Beam Summit!

Senior ML Engineer at Oden

Not one of Oden’s first engineers
(still feeling the pain for those other bad
engineering decisions)

I wrote my first beam job in 2020

This is my third Beam Summit!

BEAM SUMMIT NYC 2025

Who is Oden Technologies?

 Oden Technologies

● Think “New Relic but for manufacturing”

● Real-time and historical analytics for
manufacturing

● Customers in plastics, chemical, paper

● We have lots of time-series data

● Productized machine learning an AI

BEAM SUMMIT NYC 2025#

 How Does Oden Use Beam
Streaming

● Processing of “raw” manufacturing data
via MQTT (Clearblade to PubSub)

● Stateful and windowed transformation
and state change detection

● Delivery into Clickhouse and BigQuery

PLC

Pub/Sub Dataflow

BigQuery

Clickhouse Oden Platform

Batch

● The same jobs we run in streaming but in
a special “batch mode” for:

○ Backfills

○ Late Data Processing

○ Outage Recovery

Batch
Processing

Streaming StreamingMQTT

Clearblade

BEAM SUMMIT NYC 2025#

Example Job: Calculated Metrics

User Has

diameter-x and diameter-y

User Wants

avg-diameter = (diameter-x + diameter-y) / 2

Calculated Metrics

● New “calculated” metrics need to be
computed in real-time

● Components come from different sensors

● User-defined formulas stored in Postgres

● New calculated metrics are treated just
like “real” metrics

diameter-y

diameter-x

BEAM SUMMIT NYC 2025

Predictive Metrics

Customers perform “off line” tests of their
product to determine quality

● Paper
○ Stretch until tear testing
○ Folding and crushing

● Ink
○ Color spectrum testing
○ Particulate distribution testing

● Wire
○ Tensile strength
○ Wall thickness

These measures come 40m to 2d after
production.

Hypothesis
In-line measurement can
predict off-line quality

Architecture Overview

BEAM SUMMIT NYC 2025#

Clients

Architecture Overview

● Experiments are conducted locally to fit
the appropriate model, features and
pipeline.

● Automated Training is orchestrated via
Airflow using Cloud Run Jobs.

Production
Models

Manual
Training

Automated
Training

MLFlow
Experiments

MLFlow Model
Registry

Models

Deploy
Cron Job

Versioned
Models

ML Server

Versioned
Models

Production
Model Versions
Cache/Config

Predictive
Metrics

Dataflow Job

Availability
Monitors

Other internal
Applications

Data

InferenceCloud Run

BEAM SUMMIT NYC 2025#

Clients

Architecture Overview

● MLFlow Experiments: Stores information
about ML model training and
experiments along with metrics, model
objects, and supporting artifacts.

● MLFlow Model Registry: Allows versioning
of production models.

Production
Models

Manual
Training

Automated
Training

MLFlow
Experiments

MLFlow Model
Registry

Models

Deploy
Cron Job

Versioned
Models

ML Server

Versioned
Models

Production
Model Versions
Cache/Config

Predictive
Metrics

Dataflow Job

Availability
Monitors

Other internal
Applications

Data

Inference

Cloud
Storage Cloud SQLCloud Run

BEAM SUMMIT NYC 2025

Architecture Overview

● MLFlow Experiments: Stores information
about ML model training and
experiments along with metrics, model
objects, and supporting artifacts.

● MLFlow Model Registry: Allows versioning
of production models.

Cloud
Storage Cloud SQLCloud Run

BEAM SUMMIT NYC 2025#

Clients

Architecture Overview

● Deploy Cron Job is scheduled using
Airflow

● Models from MLFlow Model Registry are
deployed onto MLServer

● Production Model Version information is
stored in GCS

Production
Models

Manual
Training

Automated
Training

MLFlow
Experiments

MLFlow Model
Registry

Models

Deploy
Cron Job

Versioned
Models

ML Server

Versioned
Models

Production
Model Versions
Cache/Config

Predictive
Metrics

Dataflow Job

Availability
Monitors

Other internal
Applications

Data

Inference

Training our Models

With SKLearn and MLFlow

BEAM SUMMIT NYC 2025#

Getting the Training DataGetting Data for Training

API

Real-Time Time-series Data

Batch API Data

OQL
Query

Service

aggregate
 avg(metric(“a”)) as x0,
 avg(metric(“b”)) as x1,
 avg(metric(“c”)) as x2,
where time from 2024-01-01 to 2025-01-01
and line.id = ‘123’
group by bucket 5m

SELECT
 AVG(metric_123_a) as metric_123_a_AVG,
 AVG(metric_123_b) as metric_123_b_AVG,
 AVG(metric_123_c) as metric_123_c_AVG,
 INTDIV(timestamp, 300) as bucket,
FROM metrics
WHERE timestamp BETWEEN 12345 AND 56890
GROUP BY bucket

SELECT
 timestamp,
 value
FROM quality_test
WHERE line_id = 123
AND timestamp >= 12345
AND timestamp < 67890

Python
Client

Cache
(feather)

BEAM SUMMIT NYC 2025

● Data Scientists conduct EDA, feature
engineering and builds an sklearn
pipeline.

Training the Model

BEAM SUMMIT NYC 2025

● Data Scientists conduct EDA, feature
engineering and builds an sklearn
pipeline.

● The first layer of the pipeline is designed
to support time shifted features from the
low resolution data.

Training the Model

features resolutionsamples

BEAM SUMMIT NYC 2025

● Data Scientists conduct EDA, feature
engineering and builds an sklearn
pipeline.

● The first layer of the pipeline is designed
to support time shifted features from the
low resolution data.

● All the model experiments are logged to
MLFlow along with test statistics and
supporting artifacts for peer review.

Training the Model

BEAM SUMMIT NYC 2025#

● Data Scientists conduct EDA, feature
engineering and builds an sklearn
pipeline.

● The first layer of the pipeline is designed
to support time shifted features from the
low resolution data.

● All the model experiments are logged to
MLFlow along with test statistics and
supporting artifacts for peer review.

● Optionally, if the model needs to be
retrained on a schedule with latest time
series data, automated training is
orchestrated via Airflow.

Training the Model

Automated Training DAG
(scheduled 1st of every month)

MLFlow
Experiments

Training Job

Features and
Pipeline ConfigData

Trained Model
& Artifacts

Deploying our Models

w/ MLFlow, MLServer, and a GCS config

BEAM SUMMIT NYC 2025

● Models in MLFlow Experiments are
registered to MLFlow Model Registry
along with versioning after review.

Deploying our Models

BEAM SUMMIT NYC 2025

● Models in MLFlow Experiments are
registered to MLFlow Model Registry
along with versioning after review.

● Deploy Job is runs every hour to ensure
○ All the versioned models in Model

Registry are deployed to MLServer.
○ Production model version

cache/config points to the latest
version

Deploying our Models

BEAM SUMMIT NYC 2025

● Models in MLFlow Experiments are
registered to MLFlow Model Registry
along with versioning after review.

● Deploy Job is runs every hour to ensure
○ All the versioned models in Model

Registry are deployed to MLServer.
○ Production model version

cache/config points to the latest
version

● The config contains three things
○ order of input features
○ resolution of the data expected by

the model
○ Inference metric metadata

Deploying our Models

BEAM SUMMIT NYC 2025#

● Models in MLFlow Experiments are
registered to MLFlow Model Registry
along with versioning after review.

● Deploy Job is runs every hour to ensure
○ All the versioned models in Model

Registry are deployed to MLServer.
○ Production model version

cache/config points to the latest
version

● The config contains three things
○ order of input features
○ resolution of the data expected by

the model
○ Inference metric metadata

● MLServer loads all the models into
memory and serves inference requests
from clients via GRPC

Deploying our Models

Clients

ML Server

Data

Inference

Predictive
Metrics

Dataflow Job

Availability
Monitors

Other internal
Applications

Scoring out models

With Apache Beam and MLServer

BEAM SUMMIT NYC 2025

1. Read Metrics from Pub/Sub
(using custom multi-source-reader)

2. Key metrics to Predictive Metric ID(s)
they’re components to

3. Partition key’d metrics into PCollections
by windowed size+slide

4. Window by window size and slide

5. Form tensors, score model, and form new
Metric object from score

6. Write new metrics to Pub/Sub
(using custom multi-sink-writer)

Predictive Metrics Beam Job Read from
Pub/Sub

Key by
Pred ID

Partition
by window

Window
3m, 10s

Window
5m, 30s

Score
Model

Score
Model

Write to
Pub/Sub

BEAM SUMMIT NYC 2025

● Reading and writing to Pub/Sub is done
using a multi-source reader and writer.

● This allows us to deploy this job in “batch
mode” via Options.

Predictive Metrics Beam Job Read from
Pub/Sub

Key by
Pred ID

Partition
by window

Window
3m, 10s

Window
5m, 30s

Score
Model

Score
Model

Write to
Pub/Sub

public static class Read<OutputT>
 extends PTransform<PBegin, PCollection<OutputT>> {

 public Read(ReadOptions options, Class<OutputT> outputClass) {...}

 public String getName() {
 return "Read " + outputClass.getSimpleName() + " from " + options.getReadMode();
 }
 ...

 public PCollection<OutputT> expand(PBegin input) {
 return switch (options.getReadMode()) {
 case "PUBSUB" -> expandPubsub(input);
 case "FILE" -> expandFile(input);
 case "BIGQUERY" -> expandBigQuery(input);
 default -> {
 throw new RuntimeException("Unknown mode: " + options.getReadMode());
...

public static class Write<InputT>
 extends PTransform<PCollection<InputT>, PDone> {

 public Write(WriteOptions options, Class<InputT> inputClass) {...}

 public String getName() {
 return "Write" + inputClass.getSimpleName() + " to " + options.getWriteMode();
 }
 ...

 public PDone expand(PCollection<AvroT> input) {
 return switch (options.getWriteMode()) {
 case "PUBSUB" -> expandPubsub(input);
 case "FILE" -> expandFile(input);
 case "FILE_WINDOWED" -> expandFileWindowed(input);
 case "LOG" -> expandLog(input);
 default -> {
 throw new RuntimeException("Unknown option: " + options.getWriteMode());
...

BEAM SUMMIT NYC 2025

Window
1m, 5s

Score
Model

● Because different models are built using
different sized windows, we split the
pipeline by window size.

● This means window size must be known at
DAG read time (deploy time).

● Recombining the collections with different
windows is a PITA so we run just as many
scoring PTransforms.

● We just build the DAG in a for-loop

Predictive Metrics Beam Job Read from
Pub/Sub

Key by
Pred ID

Partition
by window

Window
3m, 10s

Window
5m, 30s

Score
Model

Score
Model

Write to
Pub/Sub

Window
10m, 60s

Score
Model

BEAM SUMMIT NYC 2025

● Some steps require reading the deployed
model config which is stored in GCS.

● In the past, we would:
○ Read the config on an interval using

a GenerateSequence.
○ Collapse into a PCollectionView
○ Load into PTransforms as side input

● But this came with problems:
○ Cold-start issues
○ Strange PCollectionView errors

● Now our PTransforms:
○ Fetch the config from GCS when

needed.
○ Cache in the PTransform w/ TTL

Predictive Metrics Beam Job Read from
Pub/Sub

Key by
Pred ID

Partition
by window

Window
3m, 10s

Window
5m, 30s

Score
Model

Score
Model

Write to
Pub/Sub

BEAM SUMMIT NYC 2025

● Some steps require reading the deployed
model config which is stored in GCS.

● In the past, we would:
○ Read the config on an interval using

a GenerateSequence.
○ Collapse into a PCollectionView
○ Load into PTransforms as side input

● But this came with problems:
○ Cold-start issues
○ Strange PCollectionView errors

● Now our PTransforms:
○ Fetch the config from GCS when

needed.
○ Cache in the PTransform w/ TTL

Predictive Metrics Beam Job

BEAM SUMMIT NYC 2025

● MLServer is an application for serving
standard inference runtimes via REST and
GRPC

● Serves models over the Open Inference
Protocol standard for scoring

● Lets users serve multiple models at once
(multi-modal serving)

Why not Vertex?

● Vertex requires packaging each model in
it’s own container meaning more isolation
but more resources per model.

● At the time we chose MLServer, Vertex
required one vCPU per model.

Scoring w/ MLServer

Score
Model

GRPC

BEAM SUMMIT NYC 2025#

● Pro: Low latency, no external calls, easy to
parallelize.

● Pro: Data Scientists will touch Python.

● Pro: Built-in RunInference transform.

● Con: In our experience, Python Beam
streaming is less performant at windowing.

● Con: We have lots of homegrown code for
writing Java Beam jobs.

● Considered: Multi-Language pipelines but
we have no operational experience in
these.

Embedded Model Scoring External Scoring Service

● Pro: We get to use Java.

● Pro: It’s easy to test and scale scoring our
models from non-beam (APIs).

● Pro: We’ve decoupled model scoring
dependencies from pybeam dependencies.

● Pro: All model scoring exists in only one
place.

● Con: We risk being IO-bound.

● Con: Error tracking is more difficult.

BEAM SUMMIT NYC 2025#

Scoring w/ MLServer is easy:

1. Sort our input values by their ID.

2. Form our (2d) tensor:

Predictive Metrics Beam Job

3. And score via GRPC

Scoring against MLServer

After v1

Some interesting challenges along the way.

BEAM SUMMIT NYC 2025

Due to the high dimensionality of the windowed
join (num_inputs * window_size / window_slide)
Streaming Engine was the largest cost driver of
our models making them unprofitable for
contracts ($1,300 to 1,800 per model per year).

To solve this, we added two steps:

1. Shrink the (serialized) metric as much as
possible.

2. Window in two-stages.

Streaming Engine Optimization
Read from
Pub/Sub

Key by
Pred ID

Partition
by window

Window
3m, 10s

Window
5m, 30s

Score
Model

Score
Model

Write to
Pub/Sub

Shrink
Metric

Window
GCD(slide)

BEAM SUMMIT NYC 2025

Previously, our Metric class:

● Irrelevant UUIDs that were stored as
36-char strings.

● A legacy “name” identifier.

● Serialized using SchemaCoder
(which is way better than Serializable!)

We introduced a new smaller Metric class
(Metriquita) which:

● Dropped everything but the metric UUID,
value, and timestamp.

● Used a CustomCoder to tightly pack the
UUIDs as two longs.

Streaming Engine Optimization
Read from
Pub/Sub

Key by
Pred ID

Partition
by window

Window
3m, 10s

Window
5m, 30s

Score
Model

Score
Model

Write to
Pub/Sub

Shrink
Metric

Window
GCD(slide)

BEAM SUMMIT NYC 2025#

Streaming Engine Optimization

BEAM SUMMIT NYC 2025

Metriquita reduced each element by a constant
106b. But we still had to account for:

● Pairing a key to each element (+38b)

● Adding the window to each pair (+300b)

The clear target was to reduce the number of
elements joined in a window once and,
unintuitively, this was accomplished by
windowing twice.

Window 1: Pre-aggregate each metric into a list
of metrics (GCD of all possible window slides)

Window 2: Normal windowing but now with small
list-chunks of input metrics.

Streaming Engine Optimization
Read from
Pub/Sub

Key by
Pred ID

Partition
by window

Window
3m, 10s

Window
5m, 30s

Score
Model

Score
Model

Write to
Pub/Sub

Shrink
Metric

Window
GCD(slide)

Window
3m, 10s

Window
5m, 30s

seconds_in_a_day / window_step_size_s * num_input_metrics * window_size_s * 384b

seconds_in_a_day / window_step_size_s * num_input_metrics * window_size_s * 384b

Elements to join Element sizeJoins per day

seconds_in_a_day / window_step_size_s * num_input_metrics * 384b

+
seconds_in_a_day / window_step_size_s * window_size_s / gcd_slides * num_input_metrics * 658b

seconds_in_a_day / window_step_size_s * num_input_metrics * 384b

+ seconds_in_a_day / window_step_size_s * window_size_s / gcd_slides * num_input_metrics * 658b

Joins per day
(first)

Elements to join
(first)

Element Size
(first)

Joins per day
(second)

Lists to join
(second)

List Size
(second)

95% Discount
on Streaming Engine

(models now $180/yr)

BEAM SUMMIT NYC 2025

● At Oden, we have a large number of tiny
models. Resource sharing by models is
crucial for cost scaling reasons.

○ 4 cpu cores and 4 gigs of memory
○ 150+ production sklearn pipelines
○ 350 req/minute with <200ms latency

Shared Inference Resources

BEAM SUMMIT NYC 2025

● At Oden, we have a large number of tiny
models. Resource sharing by models is
crucial for cost scaling reasons.

○ 4 cpu cores and 4 gigs of memory
○ 150+ production sklearn pipelines
○ 350 req/minute with <200ms latency

● But we are restricted to a single python
runtime!!

Shared Inference Resources

BEAM SUMMIT NYC 2025

● At Oden, we have a large number of tiny
models. Resource sharing by models is
crucial for cost scaling reasons.

○ 4 cpu cores and 4 gigs of memory
○ 150+ production sklearn pipelines
○ 350 req/minute with <200ms latency

● But we are restricted to a single python
runtime!!

○ Changes in code for new models
may break already existing models

○ Python upgrade needed careful
planning and gymnastics

■ Perform a surgery OR
■ Retrain models in new runtime

Shared Inference Resources

In Conclusion

BEAM SUMMIT NYC 2025

Takeaways

● Streaming Beam works well forming and scoring windows of data!

○ We needed to pay close attention to Streaming Engine costs on Dataflow.

○ It’s worth testing your encoders!

○ Syncing MLServer and Dataflow via a simple JSON config has been easier than anticipated!

● Using an external service for scoring was a good call!

○ IO was never an issue.

○ Opened up non-beam inference capabilities.

● We’re still struggling to balance cost vs runtime.

○ A single inference server and runtime has saved us money.

○ Shared dependencies makes model deployment stressful.

● MLFlow and MLServer have allowed easy experimentation and deployment by Data Scientists.

BEAM SUMMIT NYC 2025

Where are we going?

● Many models perform well in real-time!
95% correlation, >60% R2

● Some offline quality tests are harder to
model than others.

● Large inconsistencies in the models
between products being manufactured.

● We are seeing success embedding our
quality predictions in bigger systems.

● Now that we’ve built this infrastructure we
can explore other predictive models such
as predicting future in-line metrics.

NYC 2025

QUESTIONS?

devon@oden.io
jeswanth.yadagani@oden.io

Devon and Jeswanth

