
NYC 2025

Remote LLM Inference with Apache
Beam: Practical Guide with Gemini and
Gemma on Vertex AI

Taka Shinagawa, Google

BEAM SUMMIT NYC 2025#

Agenda
1. Motivation

○ Why do we need “remote inference” with Apache Beam?

2. Technical Background
○ What are Gemini and Gemma?

○ What are the Apache Beam components?

3. Pipeline Implementations
○ How to implement “remote inference” with Apache Beam in Python

4. Summary
○ Recap and additional resources

BEAM SUMMIT NYC 2025#

1. Motivation

Why do we need “remote inference”
with Apache Beam?

● Limitations and challenges with
the local inference with Apache
Beam

● Advantages and challenges with
the remote inference with
Apache Beam

● Example Beam Pipeline to build

BEAM SUMMIT NYC 2025#

Motivation – Local Model Challenges

Local Inference Challenges:

● Scalability and Resource Constraints: Model
size could get bigger than worker memory.

● Hardware Complexity: Requires specific,
expensive GPUs/TPUs on every worker and
setup could be complex.

● Cost Inefficiency: Paying for idle high-end
hardware on every worker is expensive.

● API-Only Models: Frontier models like Gemini
are not available as downloadable files.

PTransform

Local Model

expand()

BEAM SUMMIT NYC 2025#

Motivation – Remote Inference
Remote Inference Advantages:

● Access to State-of-the-Art Models

● Simplified Beam’s Infrastructure &
Operations

● Elastic Scalability & High Availability

● Improved Cost-Effectiveness

● Separation of Data Pipelines and AI
Infrastructure

PTransform

Remote Model
(API Server)

expand()
Data

Engineers

AI Service Provider
or

ML Infra Engineers

BEAM SUMMIT NYC 2025#

Remote Inference Challenges

Remote Inference Challenges:

● Rate limiting: 429 errors due to LLM
endpoint quotas

● Server-side errors: 500 Internal Server
error, 503 Service Unavailable, etc.

● Noisy Neighbor problem
● Latency issues
● Variable Throughput

PTransform

Remote Model
(API Server)

expand()

BEAM SUMMIT NYC 2025#

Beam Pipeline

End-to-end Pipeline with Remote Inference

Prompts Results
Read

Transform PTransform Write
Transform

Gemini / Gemma
API

BEAM SUMMIT NYC 2025#

2. Technical Background

● What are Gemini and Gemma?

● What’s Vertex AI?

● What are Apache Beam
components for remote
inference?

BEAM SUMMIT NYC 2025#

Gemini

Google Gemini is a family of multimodal large language models (LLMs)
developed by Google DeepMind.

These models are designed to understand and generate content across various
modalities, including text, images, audio, video, and code.

Current GA models (as of 6/30/2025):

● Gemini 2.5 Pro
● Gemini 2.5 Flash
● Gemini 2.0 Flash
● Gemini 2.0 Flash Lite

BEAM SUMMIT NYC 2025#

Gemini 2.5 Pro Tops at the AI Leaderboard! (as of 6/30/2025)

Check out
https://lmarena.ai/leaderboard

BEAM SUMMIT NYC 2025#

Gemma
Gemma is a family of lightweight, state-of-the-art open models built from the same
research and technology used to create the Gemini models by Google DeepMind.

Multiple variations of Gemma for general and specific use cases:

● Gemma 3: Solve a wide variety of generative AI tasks with text and image input, support for over
140 languages, and long 128K context window. Model size (1B, 4B, 12B, 27B)

● Gemma 3n: Run multimodal AI tasks on-device with this efficient model that supports text, image,
audio, and video inputs, and a 32K context window. Model size (E2B, E4B).

● CodeGemma: Complete programming tasks with this lightweight, coding-focused generative
model.

● PaliGemma: Build visual data processing AI solutions with a model that's built to be fine-tuned for
your image data processing applications and available in multiple resolutions.

● ShieldGemma: Evaluate the safety of generative AI models' input and output against defined
policies.

● and more

BEAM SUMMIT NYC 2025#

Vertex AI (Google Cloud)
Vertex AI is a unified AI platform on Google Cloud to build, deploy, and scale machine learning (ML)
models and AI applications. Vertex AI provides a comprehensive suite of tools for the entire ML
workflow, from data preparation and model training to deployment, serving and monitoring.

BEAM SUMMIT NYC 2025#

Apache Beam PTransforms for External APIs

1. ParDo
○ Custom DoFn

2. RequestResponseIO
○ Custom Caller
○ Supported since v2.52 (Java) and v2.55 (Python)

3. RunInference
○ Supported since version 2.40 (Both Java and Python) for local model
○ ModelHandler (since v2.40, 6/2022)

■ RemoteModelHandler (since v2.65 5/2025)
● GeminiModelHandler (new for v2.66, 7/2025)
● VertexAIModelHandlerJSON (since v2.49, 7/2023)

BEAM SUMMIT NYC 2025#

ParDo + DoFn

ParDo is the fundamental PTransform for element-wise processing in Apache Beam,
applying a user-defined function called a DoFn to every element in a PCollection.

DoFn contains your specific business logic—like parsing or filtering—and as the most
versatile of all transforms, ParDo represents the core building block for all stateless,
per-element operations in a pipeline.

ParDo
PCollection PCollection

DoFn

BEAM SUMMIT NYC 2025#

ParDo + DoFn – Technical Challenges

No Automatic Retries:
If an API call fails due to a temporary server or network issue, it fails permanently for that element. You
would have to write your own complex retry logic (e.g., a for loop with time.sleep()) inside the process
method.

No Automatic Backoff:
A good retry mechanism should use a sophisticated backoff strategy to avoid overwhelming a struggling
service. You would have to implement this timing logic yourself.

Manual Batching:
The example above makes one API call per element. This is inefficient. To improve this, you would need
to implement manual batching inside the DoFn, which adds significant complexity.

No Boilerplate Code:
The setup, error handling, and client management code must be written for every different LLM API you
want to call.

BEAM SUMMIT NYC 2025#

RequestResponseIO

RequestResponseIO is a PTransform for reading from and writing to Web APIs.

● Supported since v2.52 (Java) and v2.55 (Python)

RequestResponseIO

Web API

PCollection PCollection
Caller

BEAM SUMMIT NYC 2025#

RequestResponseIO – Parameters
class apache_beam.io.requestresponse.RequestResponseIO

Parameters:
● caller – an implementation of Caller object that makes call to the API.

● timeout (float) – timeout value in seconds to wait for response from API.

● should_backoff – (Optional) provides methods for backoff.

● repeater – provides method to repeat failed requests to API due to service errors.

● cache – (Optional) a ~apache_beam.io.requestresponse.Cache object to use the

appropriate cache.

● throttler – provides methods to pre-throttle a request. Default is DefaultThrottler.

BEAM SUMMIT NYC 2025#

RequestResponseIO – DafaultThrottler
class DefaultThrottler(PreCallThrottler):

 def __init__(

 self,

 window_ms: int = 1, # length of history to consider, in ms, to set throttling.

 bucket_ms: int = 1, # granularity of time buckets that we store data in, in ms.

 overload_ratio: float = 2, # the target ratio between requests sent and successful requests.

 delay_secs: int = 5 # minimum number of seconds to throttle a request.

):

 self.throttler = AdaptiveThrottler(

 window_ms=window_ms, bucket_ms=bucket_ms, overload_ratio=overload_ratio

)

 self.delay_secs = delay_secs

BEAM SUMMIT NYC 2025#

Adaptive Throttler

Adaptive throttling makes the client "intelligent" by giving it a memory of recent events.

The client continuously tracks two key metrics over a short time window (e.g., the last 2
minutes):

● requests: The total number of requests the client has attempted to send.
● accepts: The number of requests that have completed successfully.
● K: a configurable constant (the overload_ratio), often set to 2.

It then enforces a simple rule: requests <= K * accepts

● Reducing the multiplier K will make adaptive throttling behave more aggressively
● Increasing the multiplier K will make adaptive throttling behave less aggressively

https://sre.google/sre-book/handling-overload/

BEAM SUMMIT NYC 2025#

RequestResponseIO – DafaultThrottler
Default Throttling Behavior of RequestResponseIO:

● The DefaultThrottler is initialized with window_ms=1.

● This means its "memory" of past events is only 1 millisecond long. In practice, this

disables the "adaptive" part of the throttler.

● The default behavior is therefore a simple, reactive backoff. When a request fails and

is marked for retry, the DefaultThrottler will simply pause for a fixed duration

(delay_secs, which defaults to 5 seconds).

● It does not proactively slow down based on an increasing failure rate.

BEAM SUMMIT NYC 2025#

RunInference
RunInference API is a PTransform optimized for efficient use of ML models in Beam
pipelines. ModelHandler manages complexities like model loading, resource sharing, and
performance-critical batching.

● Supported since v2.40 (6/2023)

RunInference

Local Model

PCollection PCollection

ModelHandler
(local)

BEAM SUMMIT NYC 2025#

RunInference – Parameters
class apache_beam.ml.inference.base.RunInference

Parameters:
● model_handler – An implementation of ModelHandler.

● clock – A clock implementing time_ns. Used for unit testing.

● inference_args – Extra arguments for models whose inference call requires extra parameters.

● metrics_namespace – Namespace of the transform to collect metrics.

● model_metadata_pcoll – PCollection that emits Singleton ModelMetadata containing model path

and model name, that is used as a side input to the _RunInferenceDoFn.

● watch_model_pattern – A glob pattern used to watch a directory for automatic model refresh.

● model_identifier – A string used to identify the model being loaded. You can set this if you want

to reuse the same model across multiple RunInference steps and don’t want to reload it twice.

BEAM SUMMIT NYC 2025#

RunInference – ModelHandler
class apache_beam.ml.inference.base.ModelHandler

Key Methods:
● load_model – Loads and initializes a model for processing

● run_inference – Runs inferences on a batch of examples

○ Parameters:
■ batch – A sequence of examples or features.

■ model – The model used to make inferences.

■ inference_args – Extra arguments for models whose inference call requires extra parameters.

○ Returns:
■ An Iterable of Predictions.

BEAM SUMMIT NYC 2025#

RunInference – Model Handler Subclasses

● ModelHandler (since v2.40, 6/2022) – for Local Inference

○ Model Handlers for “Local Inference”

■ PyTorch, TF, ONNX, vLLM, Sklearn, and many more

■ https://beam.apache.org/releases/pydoc/current/apache_beam.ml.inference.html

○ RemoteModelHandler (since v2.65 5/2025) – for “Remote Inference”

■ GeminiModelHandler (new for v2.66, 7/2025)

■ VertexAIModelHandlerJSON (since v2.49, 7/2023)

BEAM SUMMIT NYC 2025#

RunInference – RemoteModelHandler

RemoteModelHandler is a subclass of ModelHandler for Remote Inference.

● Supported since v2.65 5/2025

RunInference

Remote Model
(API Server)

PCollection PCollection
RemoteModel

Handler

BEAM SUMMIT NYC 2025#

RunInference – RemoteModelHandler
class apache_beam.ml.inference.base.RemoteModelHandler

Parameters:
● namespace – the metrics and logging namespace

● num_retries – the maximum number of times to retry a request on retriable errors before failing

● throttle_delay_secs – the amount of time to throttle when the client-side elects to throttle

● retry_filter – a function accepting an exception as an argument and returning a boolean. On a true

return, the run_inference call will be retried. Defaults to always retrying.

● window_ms – length of history to consider, in ms, to set throttling.

● bucket_ms – granularity of time buckets that we store data in, in ms.

● overload_ratio – the target ratio between requests sent and successful requests. This is “K” in the

formula in https://landing.google.com/sre/book/chapters/handling-overload.html.

BEAM SUMMIT NYC 2025#

RunInference – RemoteModelHandler
_MILLISECOND_TO_SECOND = 1_000
class RemoteModelHandler(ABC, ModelHandler[ExampleT, PredictionT, ModelT]):
 def __init__(
 self,
 namespace: str = '',
 num_retries: int = 5,
 throttle_delay_secs: int = 5,
 retry_filter: Callable[[Exception], bool] = lambda x: True,
 *,
 window_ms: int = 1 * _MILLISECOND_TO_SECOND,
 bucket_ms: int = 1 * _MILLISECOND_TO_SECOND,
 overload_ratio: float = 2
):

 self.throttled_secs = Metrics.counter(namespace, "cumulativeThrottlingSeconds")
 self.throttler = AdaptiveThrottler(window_ms=window_ms, bucket_ms=bucket_ms, overload_ratio=overload_ratio)
 self.logger = logging.getLogger(namespace)
 self.num_retries = num_retries
 self.throttle_delay_secs = throttle_delay_secs
 self.retry_filter = retry_filter

BEAM SUMMIT NYC 2025#

RunInference – RemoteModelHandler
class apache_beam.ml.inference.base.RemoteModelHandler

Methods:
● create_client() – Creates the client that is used to make the remote inference request in request().

All relevant arguments should be passed to __init__().

● abstract request() – Makes a request to a remote inference service and returns the response.
Should raise an exception of some kind if there is an error to enable the retry and client-side
throttling logic to work. Returns an iterable of the desired prediction type.

○ Parameters:
■ batch – A sequence of examples or features.
■ model – The model used to make inferences.
■ inference_args – Extra arguments for models whose inference call requires extra

parameters.
○ Returns:
○ An Iterable of Predictions.

BEAM SUMMIT NYC 2025#

Summary of Remote Inference Approaches
Challenge ParDo/DoFn RequestResponseIO RunInference + RemoteModelHandler

Retries &

Backoff

No. Need custom

implementation

Need a custom should_backoff

function to control retry logic

Handled by RemoteModelHandler.

Throttling No. Need custom

implementation

Need to set proper parameters for

DefaultThrottler.

Default setting is only reactive.

Handled by AdaptiveThrottler.

The default values are different from

RequestResponseIO (which is only

reactive)

Boilerplate

Code

Requires a full

custom DoFn

implementation

Need to implement a custom

Caller

Pre-built Model Handlers for Gemini

and Gemma on Vertex

BEAM SUMMIT NYC 2025#

Apache Beam – Runners

1. Direct Runner
2. Prism Runner
3. Distributed Runners

○ Google Cloud Dataflow
○ Apache Flink
○ Apache Samza
○ Apache Spark
○ and many more

This session won’t cover Runner specific topics

BEAM SUMMIT NYC 2025#

3. Implementations

How can I implement “remote
inference” with Apache Beam?

● Focused on Python
● Gemini API
● Gemma with Vertex AI API

BEAM SUMMIT NYC 2025#

Implementations Covered

PTransform Implementations:

● RequestResponseIO
○ Custom Caller Example (for Gemini)

● RemoteModelHandler (new with v2.65 in 5/2025)
○ GeminiModelHandler (new with upcoming v2.66)
○ VertexAIModelHandlerJSON (new with v2.49 in 7/2023)

LLM APIs:

● Gemini (on Google GenAI API)
● Gemma (on Vertex AI Prediction API)

BEAM SUMMIT NYC 2025#

Python Packages Installation

Apache Beam v2.66.0 (released on July 1, 2025)
● pip install apache-beam[gcp]==2.66.0 -U

Google GenAI SDK (for Gemini)
● pip install google-genai

Python SDK for Vertex AI (for Gemma)
● pip install google-cloud-aiplatform -U

BEAM SUMMIT NYC 2025#

Gemini API (Python)

from google import genai
from google.genai import types

client = genai.Client(
vertexai=True,

 project='your-project-id',
 location='us-central1',
 http_options=types.HttpOptions(api_version='v1')
)

response = client.models.generate_content(
 model='gemini-2.5-flash',

contents='Why is the sky blue?'
)
print(response.text)

BEAM SUMMIT NYC 2025#

Gemma Deployment on Vertex AI

BEAM SUMMIT NYC 2025#

Vertex AI API for Gemma (Python)
from google.cloud import aiplatform
endpoint =
aiplatform.Endpoint(f"projects/{PROJECT_NUMBER}/locations/{REGION}/endpoints/{ENDPOINT
_ID}")

instances = [
 {
 "@requestFormat": "chatCompletions",
 "messages": [
 {
 "role": "user",
 "content": "What is machine learning?"
 }
],
 "max_tokens": 100
 }
]

endpoint.predict(instances=instances, use_dedicated_endpoint=True)

BEAM SUMMIT NYC 2025#

RequestResponseIO for Gemini

responses = requests | RequestResponseIO(GeminiCustomCaller())

GeminiCustomCaller is a custom Caller

RequestResponseIO

Gemini API

PCollection PCollection
Custom Caller

BEAM SUMMIT NYC 2025#

Gemini Custom Caller Example
from google import genai
from google.genai.types import HttpOptions

class GeminiCustomCaller(Caller):
 def __enter__(self):

 self.client = genai.Client(http_options=HttpOptions(api_version="v1"))
 return self

 def __call__(self, prompt):
 try:

 response = self.client.models.generate_content(
 model="gemini-2.5-flash",
 contents=prompt
)
 except APIError as e:
 raise UserCodeExecutionException() from e
 return response

https://beam.apache.org/documentation/io/built-in/webapis/

BEAM SUMMIT NYC 2025#

RequestResponseIO + Custom Gemini Caller
import apache_beam as beam

from apache_beam.io.requestresponse import RequestResponseIO

from apache_beam.options.pipeline_options import PipelineOptions

prompts = [

 "What is 5+2?",

 "Who is the protagonist of Lord of the Rings?",

 "What is the air-speed velocity of a laden swallow?"

]

with beam.Pipeline(options=PipelineOptions()) as pipeline:

 _ = (

 pipeline

 | "Create data" >> beam.Create(prompts)

 | "Gemini AI" >> RequestResponseIO(GeminiCustomCaller())
 | "Print results" >> beam.Map(lambda response: print(response.text))

)

 result = pipeline.run()

BEAM SUMMIT NYC 2025#

Customizing Parameters with DefaultThrottler
Unlock the true adaptive capabilities by providing a meaningful window.

This throttler will analyze the last 2 minutes of activity to make decisions.

custom_throttler = DefaultThrottler(

 window_ms=120000, # Analyze the last 2 minutes of history

 bucket_ms=5000, # In 5-second granular buckets

 overload_ratio=1.5 # Be conservative: throttle if failures increase

)

with beam.Pipeline(options=PipelineOptions()) as pipeline:

 _ = (

 pipeline

 | "Create data" >> beam.Create(prompts)

 | "Gemini AI" >> RequestResponseIO(caller=GeminiCustomCaller(),

 throttler=custom_throttler

)
 | "Print results" >> beam.Map(lambda response: print(response.text))

)

BEAM SUMMIT NYC 2025#

RunInference + GeminiModelHandler

responses = requests | RunInference(GeminiModelHandler())

RunInference

Gemini API

PCollection PCollection

GeminiModelHandler()

BEAM SUMMIT NYC 2025#

Gemini with RunInference
GeminiModelHandler()

Parameters:

● model_name – the Gemini model to send the request to
● request_fn – the function to use to send the request. Should take the model name and the parameters

from request() and return the responses from Gemini. The class will handle bundling the inputs and
responses together.

● api_key – the Gemini Developer API key to use for the requests. Setting this parameter sends requests for
this job to the Gemini Developer API. If this parameter is provided, do not set the project or location
parameters.

● project – the GCP project to use for Vertex AI requests. Setting this parameter routes requests to Vertex
AI. If this parameter is provided, location must also be provided and api_key should not be set.

● location – the GCP project to use for Vertex AI requests. Setting this parameter routes requests to Vertex
AI. If this parameter is provided, project must also be provided and api_key should not be set.

● min_batch_size – optional. the minimum batch size to use when batching inputs.
● max_batch_size – optional. the maximum batch size to use when batching inputs.
● max_batch_duration_secs – optional. the maximum amount of time to buffer a batch before emitting;

used in streaming contexts.

BEAM SUMMIT NYC 2025#

Gemini with RunInference – Python
import apache_beam as beam

from apache_beam.ml.inference.gemini_inference import GeminiModelHandler # New for Beam 2.66

from apache_beam.ml.inference.gemini_inference import generate_from_string # New for Beam 2.66
from apache_beam.options.pipeline_options import PipelineOptions

model_handler = GeminiModelHandler(
 model_name='gemini-2.5-flash',

 request_fn=generate_from_string,

 project=project, location=location

)

with beam.Pipeline(options=PipelineOptions()) as pipeline:

 _ = (

 pipeline

 | "Create data" >> beam.Create(prompts)

 | "RunInference" >> RunInference(model_handler)
 | "Print results" >> beam.Map(lambda response: print(response.text))

)

result = pipeline.run()

BEAM SUMMIT NYC 2025#

Gemma with RunInference

RunInference(KeyedModelHandler(VertexAIModelHandlerJSON()))

RunInference

Vertex Gemma API

PCollection PCollection

VertexAIModelHandlerJSON

BEAM SUMMIT NYC 2025#

Gemma with RunInference
VertexAIModelHandlerJSON()

Parameters:

● endpoint_id – the numerical ID of the Vertex AI endpoint to query
● project – the GCP project name where the endpoint is deployed
● location – the GCP location where the endpoint is deployed
● experiment – optional. experiment label to apply to the queries.
● network – optional. the full name of the Compute Engine network the endpoint is deployed on;

used for private endpoints. The network or subnetwork Dataflow pipeline option must be set and
match this network for pipeline execution. Ex: "projects/12345/global/networks/myVPC"

● private – optional. if the deployed Vertex AI endpoint is private, set to true. Requires a network to
be provided as well.

● min_batch_size – optional. the minimum batch size to use when batching inputs.
● max_batch_size – optional. the maximum batch size to use when batching inputs.
● max_batch_duration_secs – optional. the maximum amount of time to buffer a batch before

emitting; used in streaming contexts.

BEAM SUMMIT NYC 2025#

Gemma with RunInference – Python
from apache_beam.ml.inference.base import KeyedModelHandler

from apache_beam.ml.inference.base import RunInference

from apache_beam.ml.inference.vertex_ai_inference import

VertexAIModelHandlerJSON

model_handler = VertexAIModelHandlerJSON(
 endpoint_id=ENDPOINT_ID, project=PROJECT_ID, location=LOCATION

)

parameters = {

 "temperature": 0.2, "maxOutputTokens": 256, "topK": 40, "topP": 0.95, "use_dedicated_endpoint": True

}

with beam.Pipeline(options=PipelineOptions()) as pipeline:

 _ = (pipeline

 | "Create data" >> beam.Create(prompts)

 | "RunInference" >> RunInference(
 KeyedModelHandler(model_handler),

 inference_args=parameters

)
 | "Print results" >> beam.Map(lambda response: print(response.text))

)

 result = pipeline.run()

BEAM SUMMIT NYC 2025#

Customizing Parameters with
AdaptiveThrottler

gemma_handler = VertexAIModelHandlerJSON(
 endpoint_id=ENDPOINT_ID,
 project=PROJECT,
 region=REGION,
 window_ms=300000, # length of history to consider, in ms, to set throttling.
 bucket_ms=10000, # granularity of time buckets that we store data in, in ms.
 overload_ratio=2.0, # K: the target ratio between requests sent and successful requests.
 throttle_delay_secs=30,
 num_retries=5,
 retry_filter=is_retryable
)

BEAM SUMMIT NYC 2025#

4. Summary

What we learned in this session?

BEAM SUMMIT NYC 2025#

Summary

● Remote LLM Inferencing with Apache Beam

● RunInference + RemoteModelHandler is recommended for Apache Beam
v2.65 or newer version

○ GeminiModelHandler for Gemini

○ VertexAIModelHandlerJSON for Gemma with Vertex AI

● RequestResponseIO + Caller is for older versions of Apache Beam or legacy
code base (e.g. dependencies with existing custom Caller implementation)

● Example code:
○ https://github.com/blueviggen/beam-remote-llm-examples

NYC 2025

QUESTIONS?

Remote LLM Inference

