
NYC 2025

Revisiting Splittable DoFn
in KafkaIO

Steven van Rossum
Software Engineer, Google Cloud (Consulting)

BEAM SUMMIT NYC 2025#

KafkaUnboundedSource ReadFromKafkaDoFn

● Fixed parallelism
○ May decrease when splits end

● Source matches partitions
○ One or more partitions per split
○ Evaluated during construction

● Polls a consumer on a
background thread

● Offsets can be committed in
checkpoint finalization

● Dynamic parallelism
● Source matches partitions

○ One partition per split
○ Evaluated continuously

● Polls a consumer on the
processing thread

● Offsets can be committed in
a downstream step

BEAM SUMMIT NYC 2025#

UnboundedReader

interface UnboundedReader<OutputT> {

 OutputT getCurrent();

 Instant getCurrentTimestamp();

 boolean advance();

 UnboundedSource.CheckpointMark getCheckpointMark();

 byte[] getCurrentRecordId();

 byte[] getCurrentRecordOffset();

 UnboundedSource<OutputT,?> getCurrentSource();

 long getSplitBacklogBytes();

 long getTotalBacklogBytes();

 Instant getWatermark();

 boolean start();

}

BEAM SUMMIT NYC 2025#

Splittable DoFn

interface SplittableDoFn<SourceT, OutputT, …> {

 RestrictionT getInitialRestriction(SourceT);

 TrackerT newTracker(SourceT, RestrictionT);

 void processElement(SourceT, OutputReceiver<OutputT>);

 double getSize(RestrictionT, TrackerT);

 void splitRestriction(RestrictionT, TrackerT);

 TruncateResult<> truncateRestriction(RestrictionT, TrackerT);

 WatermarkEstimatorStateT getInitialWatermarkEstimatorState();

 WatermarkEstimatorT newWatermarkEstimator();

}

BEAM SUMMIT NYC 2025#

Splittable DoFn

BEAM SUMMIT NYC 2025#

KafkaIO on different Dataflow runners

● Frequently reported issues with KafkaIO on Runner V2
○ Low throughput

■ 4-100x variance
○ Resource hungry

■ >100 Kafka client connections per second
● Schema registries become unreachable

■ Memory running low
■ High CPU utilization

BEAM SUMMIT NYC 2025#

● >100 connections per second?
○ New Kafka client per call to processElement
○ Caching backlog estimators for all assignments

● Easy fix
○ Cache kafka clients per DoFn

KafkaIO on different Dataflow runners

BEAM SUMMIT NYC 2025#

● DoFn instance fields are not shared
○ Every DoFn instance (execution) creates their own cache

● No easy fix
○ Static fields are shared among all instances (construction, execution)
○ Different instances of the same DoFn should have isolated caches

● Solution
○ MemoizingPerInstantiationSerializableSupplier

■ Access through group scope assigned at construction

KafkaIO on different Dataflow runners

BEAM SUMMIT NYC 2025#

KafkaIO on Dataflow Runner V1

BEAM SUMMIT NYC 2025#

KafkaIO on Dataflow Runner V2

BEAM SUMMIT NYC 2025#

● First attempts focused on reusing Kafka clients for multiple active splits
○ ExecutorService

■ Submit blocks of operations per processing thread
■ Splits queue up polls that could have been combined

○ Phaser
■ Join and await arrival at the next phase
■ Once all current parties arrive one of the parties calls poll
■ All parties consume results and leave to emit elements without

blocking other parties
■ A split’s partition is paused/resumed on join/leave to prevent a

call to poll from advancing if the split may end before rejoining

But wait, there’s more

BEAM SUMMIT NYC 2025#

● Cache Kafka clients per partition as weak references
○ Eviction is triggered by GC

● Lazily submit backlog estimator refreshes in the background
○ Carefully order atomic operations (release/acquire)

■ Non-volatile atomic writes to 64-bit primitives require Java 11
● Remove offset gap adjustments

○ Slow readers on a partition’s tail fall behind and report low backlog
● Update tracker and watermark for non-visible progress

○ Poll may return no records while advancing client’s position

Keeping it simple in 2.65.0

BEAM SUMMIT NYC 2025#

● Store the group scoped cache instead of retrieving it
○ Removes unnecessary overhead while processing elements

● Use unsigned integer to floating point conversions
○ BigDecimal comes with noticeable overhead

● Run metric and internal state updates before emitting elements
○ Emitting elements runs the remainder of a fused stage

● Resolve continuous growth of reported data lag
○ Profiling and debug capture show threads stuck in Selector.wait

● Tracing and metrics
○ Work in progress

Looking ahead

BEAM SUMMIT NYC 2025#

● Accelerate testing
○ Throughput
○ Concurrency bottlenecks
○ Step/stage lag
○ Source system issues

IO test harness

NYC 2025

QUESTIONS?

Steven van Rossum

