Revisiting Splittable DoFn
in KafkalO

Steven van Rossum
Software Engineer, Google Cloud (Consulting)




KaofkoUnboundedSource

Fixed parallelism
o May decrease when splits end

Source matches partitions

o One or more partitions per split
o Evaluated during construction

Polls a consumer on a

background thread
Offsets can be committed in
checkpoint finalization

ReadFromKafkaDoFn

Dynamic parallelism

Source matches partitions
o One partition per split
o Evaluated continuously
Polls a consumer on the
processing thread
Offsets can be committed in

a downstream step




UnboundedReader

interface UnboundedReader<OutputT> {
OutputT getCurrent();
Instant getCurrentTimestamp();
boolean advance();
UnboundedSource.CheckpointMark getCheckpointMark();
byte[] getCurrentRecordId();
byte[] getCurrentRecordOffset();
UnboundedSource<OutputT, ?> getCurrentSource();
long getSplitBacklogBytes();
long getTotalBacklogBytes();
Instant getWatermark();
boolean start();




Splittable DoFn

interface SplittableDoFn<SourceT, OutputT, ...> {
RestrictionT getInitialRestriction(SourceT);
TrackerT newTracker(SourceT, RestrictionT);
void processElement(SourceT, OutputReceiver<OutputT>);
double getSize(RestrictionT, TrackerT);
void splitRestriction(RestrictionT, TrackerT);
TruncateResult<> truncateRestriction(RestrictionT, TrackerT);
WatermarkEstimatorStateT getInitialWatermarkEstimatorState();
WatermarkEstimatorT newWatermarkEstimator();




Splittable DoFn

Pair each A Split each R KV<A, R> Process
with initial to parallelize (and split/adjust
restriction R processing of A R more!)

magic




KafkalO on different Dataflow runners

e Frequently reported issues with KafkalO on Runner V2
o Low throughput
m 4-100x variance
o Resource hungry
m >100 Kafka client connections per second
e Schema registries become unreachable
m Memory running low
m High CPU utilization




KafkalO on different Dataflow runners

e >100 connections per second?

o New Kafka client per call to processElement

o Caching backlog estimators for all assignments
e FEasy fix

o Cache kafka clients per DoFn




KafkalO on different Dataflow runners

e DoFn instance fields are not shared
o Every DoFn instance (execution) creates their own cache
e No easy fix
o Static fields are shared among all instances (construction, execution)
o Different instances of the same DoFn should have isolated caches
e Solution
0 MemoizingPerInstantiationSerializableSupplier
m Access through group scope assigned at construction




KafkalO on Dataflow Runner Vi

Throughput (estimated bytes/sec) @ @ Create alerting policy

v

04 Name
Source/KafkalO.Read.ReadFromKafkaViaSDF/Read(KafkaUnboundedSource)/DataflowRt
D Source/KafkalO.Read.ReadFromKafkaViaSDF/Read(KafkaUnboundedSource)/Striplds
D Shuffle or passthrough/Map

D Drop/ParDo(Anonymous)

3:35I PM
v Value
14.33GiB/s
14.25GiB/s
9.08GiB/s

5.33GiB/s

20GiB/s

15GiB/s

10GiB/s

5GiB/s




KafkalO on Dataflow Runner V2

Throughput (estimated bytes/sec) @ @

Create alerting policy

60GiB/s

40GiB/s

20GiB/s

T
PEYA V<) 2:40 PM

om
O Name

T
2:55PM

v Value

Source/KafkalO.Read.ReadFromKafkaViaSDF/KafkalO.ReadSourceDescriptors/ParMultiD 41.74GiB/s

D Source/KafkalO.Read.ReadFromKafkaViaSDF/KafkalO.ReadSourceDescriptors/MapElem¢ 39.52GiB/s

D Shuffle or passthrough/Map/ParMultiDo(Anonymous)

D Drop/ParDo(Anonymous)/ParMultiDo(Anonymous)

25.63GiB/s

14.82GiB/s




But wait, there's more

e First attempts focused on reusing Kafka clients for multiple active splits
o ExecutorService

Submit blocks of operations per processing thread
Splits queue up polls that could have been combined

o Phaser

Join and await arrival at the next phase

Once all current parties arrive one of the parties calls poll

All parties consume results and leave to emit elements without
blocking other parties

A split's partition is paused/resumed on join/leave to prevent o
call to poll from advancing if the split may end before rejoining




Keeping it simple in 2.65.0

Cache Kafka clients per partition as weak references

o FEviction is triggered by GC
Lazily submit backlog estimator refreshes in the background

o Carefully order atomic operations (release/acquire)

m  Non-volatile atomic writes to 64-bit primitives require Java 11

Remove offset gap adjustments

o Slow readers on a partition’s tail fall behind and report low backlog
Update tracker and watermark for non-visible progress

o Poll may return no records while advancing client’s position




Looking ahead

Store the group scoped cache instead of retrieving it
o Removes unnecessary overhead while processing elements
Use unsigned integer to floating point conversions
o BigDecimal comes with noticeable overhead
Run metric and internal state updates before emitting elements
o Emitting elements runs the remainder of a fused stage
Resolve continuous growth of reported data lag
o Profiling and debug capture show threads stuck in Selector.wait
Tracing and metrics
o Work in progress




|O test harness

e Accelerate testing
Throughput
Concurrency bottlenecks
Step/stage lag
Source system issues




Steven van Rossum

3=AM

NYC 2025



