Scalable Prompt Optimization in
Apache Beam LLM Workflows

Tomi Ajakaiye

Presenter Profile

Tomi Ajakaiye is an Al and data engineering consultant with over 10 years of experience managing and
building large-scale, enterprise-grade business applications. She specializes in designing and deploying
scalable solutions powered by large language models (LLMs) across different verticals and business
domains such healthcare, finance, and government sectors.

As the Lead Partner at BluePod Consulting Inc., an Al consulting and data analytics firm based in Ontario,
Canada, Tomi leads cross-functional teams in delivering innovative, secure, and compliant Al systems that
drive operational efficiency and digital transformation.

The Pipeline Proliferation Problem: When you have a pipeline for everything, how do you empower users to
easily find and run the right one for their task?

Our Vision: Intent-Driven Data Processing: Moving beyond manual selection to a new paradigm where a
user simply states their goal and the system takes care of the rest.

The Pipeline Catalog: A Toolkit of Beam YAML Templates: How we build and maintain a set of standardized,
reusable, and highly optimized Beam YAML pipelines ready for execution.

Simplicity, Governance, and the Future: Discussing the powerful benefits of this approach and what's next
for our intent-driven platform.

The Pipeline Proliferation Problem

Database

API Seurce
.
File Bystem "

H ~
How does this : ~ .TLansform B
all connect?

P

S

v

Aggregator

Dashboard
Analytics DB
Confused User Data Lake

A Victim of Our Own Success:

We love Apache Beam YAML Pipelines. Its power and flexibility allowed
us to build robust, scalable pipelines for dozens of critical business
tasks

A Pipeline for Everything:
We created highly-optimized, specialized pipelines for:

Real-time sentiment analysis

Pll redaction in customer feedback
Summarizing news articles
Converting data formats for archival

This specialization is great for efficiency and performance.

The Emerging Challenge:

o This success created a new kind of complexity. With so many
tools available, a critical question emerged:
How does a user, especially a non-technical one, know which
pipeline to use and when?

The Friction of Finding the Right Tool

User needs help
with a task

ck Wiki Pages

Fi tinct: internal docs

Wiki Result:
exists but

@

incomplete/confusing

Teammate Says:
*I think you need to fill © a Teammate
out the official form" Melon help is needed

¢ Dead End

Form Experience:

| ck Official Docs
la) e docs have answer

:

Docs Result:
Last updated 2 years ago
Procedures have changed|

30 min

=)

{ Dead End

Task Complete
)

1' Out Form 27 required fields
"official" process Unclear

Takes 45 minutes

45 min

2 hours later

The Pipeline Proliferation Problem

Frustration Levels
@ Wiki: Confused
& Docs: Annoyed
(& Teammate: Hopeful
@ Form: Furious
Total Time: 2+ hours

The Documentation Trap:

Ouir first instinct was to create documentation: wikis, READMESs, and decision
trees to guide users.

This solution quickly became the new problem.

Root Problems
« Incomplete wiki pages
* Outdated documentation
« No single source of truth
« Complex approval process
« Poor form design
« Lack of user guidance

Each step adds friction!

Why Documentation Fails at Scale:

Cognitive Overload: Users face a wall of choices. Is my task "summarization" or
‘entity extraction"? Do | need the streaming or batch version?

Instant Obsolescence: Documentation is outdated the moment a new pipeline
is added or modified. It's a constant source of maintenance debt.

The "Human Router” Bottleneck: We created a dependency on a few key
engineers who became the only ones who knew how to run the right job for the
right task.

The Beam YAML Paradox:

A user is still confronted with a list of files like sentiment_v2.yaml,
summarize_news.yaml, and redact_pii_streaming.yaml and has no clear path
to making the right choice

The Pipeline Proliferation Problem

The True Cost of Complexity

2 g

Lost Time Blocked Innovations Risk of Errors

The Path Forward

fundamentally change our
approach. We had to move
from a system where the user
finds the pipeline, to a system
where the pipeline finds the
user.

Valuable time is wasted hunting for .

the right tool instead of getting |ncreO$ed RlSk Of Error
work done. Simple tasks that should Users are more likely to run the wrong
take minutes can stretch for hours pipeline, use incorrect parameters, or
or even days. process data in a way that yields
inaccurate or costly results.

Stifled Innovation
A product manager with a brilliant
idea for a new data insight will And that's what led us to our

simply give up if the barrier to entry intent-driven solution
is too high .

Lost Productivity } e \We realized we needed to

2. Intent Driven Data Pipelines

New User Experience

A business user states their goal: Find negative reviews about shipping.”

The system generates an optimized prompt for the sentiment analysis pipeline:

"Analyze the following review for negative sentiment specifically related to 'shipping', ‘'delivery', or
'packaging'. Output 'True' if found, otherwise 'False'. Review: {review_text}"

User Goal Optimized Prompt
"Find negative reviews _> "Analyze review for
about shipping"
about

y Or

Output or

Review: {review_text}"

2. Intent Driven Data Pipelines

1. The Beam YAML Pipeline Repository:

e Thisis our foundation. We maintain a version-controlled library of expert-built, reusable Beam

pipelines. Each YAML file defines a specific capability (e.9., sentiment, summarization) and is designed
to accept o prompt as a parameter.

2. The LLM-Powered Prompt Assistant:

This is the core of our implementation. When a user selects a pipeline and states their goal, this
LLM-based service acts as a co-pilot.
It understands the requirements of the chosen Beam YAML pipeline and transforms the user's simple

goal into a structured, optimized prompt query that will yield the best results from the model inside
the pipeline.

3. Parameterized Pipeline Execution:
e The generated prompt isnt hard-coded. It's passed as a parameter at runtime when the Beom YAML

pipeline is executed. This makes our pipelines flexible and dynamically adaptable to a wide range of
user goals without ever changing the underlying pipeline code.

Intent Driven Data Pipelines

pipeline:
name: sentiment-analysis-pipeline
description: "Parameterized sentiment analysis pipeline using BEAM"

- name: AnalyzeSentiment
type: Map
config:
function: |
def analyze_sentiment(message):
import requests
import json

Runtime parameters
parameters:
- name: analysis_prompt
type: string
description: "The prompt template for sentiment analysis"
required: true
name: input_topic
type: string
description: "Input PubSub topic"
required: true
name: output_table
type: string
description: "Output BigQuery table" "temperature': 0.1
required: true
name: model_endpoint
type: string response = requests.post(
description: "ML model API endpoint” "${model_endpoint}",
required: true json=payload,
headers={'Content-Type': ‘'application/json'}

Use parameterized prompt
prompt = "${analysis_prompt}".format(text=message['text'])

payload = {
‘prompt’: prompt,
‘max_tokens': 100,

Pipeline transforms
transforms:

- name: ReadMessages if response.status_code = 200:
type: ReadFromPubSub result = response.json()
config: return {

topic: "${input_topic}" 'id': message['id']
'text': message['text'],

- name: ParseJson ‘sentiment': result.get('sentiment', ‘'neutral'),
type: Map ‘confidence': result.get('confidence', 0.0)
config: ‘timestamp': message['timestamp']

function: | ¥
def parse_json(element): else:

import json

data = json.loads(element.decode('utf-8'))

return {
'id': data.get('id', ''),
‘text': data.get('text', ''),
'timestamp': data.get('timestamp', '')

return {
'id': message['id'],
‘text': message['text'],
'sentiment': 'error',
‘confidence': 0.0,
‘timestamp': message['timestamp']

Beam YAML Pipeline Catalog

Version-controlled library of expert-built,
reusable Beam pipelines. Each YAML
defines specific capabilities and accepts
prompts as parameters.

Building a Standardized Toolkit

e We created a central repository for all our
Beam YAML pipelines.

e Each pipeline is designed to be a modular

'skill" (e.9., sentiment analysis, Pll redaction).

e They are not just code; they are
standardized assets.

3. The Pipeline Repository: A toolkit for Beaom YAML templates

LLM Prompt Assistant Parameterized Execution

Al co-pilot that understands pipeline Dynamic pipeline execution with Al-
requirements and transforms user goals generated prompts passed as runtime
into structured, optimized prompts for parameters. Flexible and adaptable

maximum model performance. without changing pipeline code.

4 The rules of the Catalog

. Clear Naming & Versioning: sentiment-analysis.vl.yaml is
instantly understandable. Versioning in the filename and in
Git allows for safe, iterative improvements.

. Defined Interface: Every pipeline in the repository clearly
defines its expected inputs (e.g., a text field named
user_review) and outputs.

. Parameterization is Key: Most importantly, each pipeline is
designed to be configured at runtime, especially with the

_ LLM prompt.

BEAM SUMMIT NYC 2025

3. The Pipeline Repository: A toolkit for Beaom YAML templates

The Pipeline Repository: Our Foundation for Scalability

To make our vision work, we had to stop treating pipelines as one-off scripts. Our core philosophy
is: Pipelines are products, not projects.

How We Build the Catalog:

Centralized & Version Controlled: Every pipeline lives in a single Git repository. This is our single source of truth,
allowing for branching, code reviews, and safe, iterative development.

Standardized Structure: Each YAML file follows a strict template. This consistency means anyone on the team can
understand a new pipelines structure at a glance.

Designed for Reusability: We don't build pipelines for a single use case. We build modular "skills"—like sentiment analysis
or summarization—that can be applied to many different data sources and goals.

How We Maintain the Catalog:

Clear Naming Conventions: A file is always named [skill].[version].yaml. There is never ambiguity about
what a pipeline does or which version is being used.

Separation of Concerns: The pipeline logic (the YAML) is kept completely separate from the application
logic (the prompt). This allows us to update one without breaking the other.

3. The Pipeline Repository: A toolkit for Beam YAML templates

Pipeline Repository Deployment

Git-based version control with automated deployment to production repository

Production Pipeline Repository

Versioned, production-ready pipeline templates

sentiment.vl.yaml| vi.3 summarize.v2.yaml| v2.1
O beam-pipelines
Expert-built sentiment

pipeline

brompts and
~ main omaus
: a4f2c9l
1 - Enhanced summarization"
il bEeS Classification
Automated
Deployment

[> dev pPii_redact.vl.yaml(vi.0

Latest: e8b9d45 . ; .
scy-focused pipeline for

jetecting and redacting

personally identifiable

nformation.

BEAM SUMMIT NYC 2025

3. The Pipeline Repository: A toolkit for Beaom YAML templates

Key Features:

e Goal-to-Prompt Translation: User says "‘analyze customer feedback for app updates”
— LLM generates optimized sentiment analysis prompt
Pipeline Intelligence: Understands requirements for different pipeline types
Context Awareness: Incorporates domain knowledge and specific use cases
Automatic Pipeline Selection: Suggests best pipeline based on user description

LLM Prompt Assistant Generate Optimized Prompt

def generate_optimized_prompt(self,
class LLMPromptAssistant: pipeline_type: PipelineType,
user_goal: str,
LLM-powered prompt assistant that transforms user goals into optimized context: Dict[str, Any] = None) — str:
prompts for BEAM YAML pipelines e
i Transform user goal into optimized prompt for the selected pipeline
pipeline_meta = self.pipeline_registry[pipeline_typel

def __init__(self, api_key: str):
context = context or {}

self.client = openai.OpenAI(api_key=api_key)

self.pipeline_registry = self._load_pipeline_registry() T

system_message = """

def _load_pipeline_registry(self) — Dict[PipelineType, PipelineMetadatal: Fou e . fexprE proni enginees ispeciaiizing T (pipéidne neka nanel

“Load metadata for all available BEAM pipelines""
return { Pipeline Details:
PipelineType.SENTIMENT_ANALYSIS: PipelineMetadata(- Purpose: {pipeline_meta.description}

name="Sentiment Analysis Pipeline", - Input Format: {pipeline_meta.input_format}
description="Analyzes emotional tone of text data", - Output Format: {pipeline_meta.output_format}
input_format="JSON with 'text' field",
output_format="sentiment classification with confidence",
prompt_requirements=[

“Clear sentiment categories (positive/negative/neutral)",

“Confidence scoring mechanism",

"Handling of ambiguous cases",

"Context consideration instructions"

Requirements for effective prompts:
{chr(10).join(+"- {req}" for req in pipeline_meta.prompt_requirements)}

Optimization Guidelines:
{chr(10).join(f"- {tip}" for tip in pipeline_meta.optimization_tips)}

Your task: Transform the user's goal into a structured, optimized prompt that will yield the best results from the model
1,
optimization_tips=[Return ONLY the optimized prompt text, ready to be used in the pipeline.

"Use specific examples for edge cases",
"Define confidence thresholds clearly",
“Consider domain-specific language", # Create user message with goal and context
"Handle sarcasm and irony explicitly" user_message = f
User Goal: {user_goal}

),

PipelineType.TEXT_CLASSIFICATION: PipelineMetadata(
name="Text Classification Pipeline",
deseription=jtatedanl 265 teXn ANToVprSdorIhed fclassds!y Generate an optimized prompt for this pipeline that addresses the user's goal.
input_format="JSON with 'text' field",
output_format="class label with confidence score",

Additional Context:
{json.dumps(context, indent=2) if context else "None provided"}

prompt_requirements=[# Call LLM to generate optimized prompt

"Clear class definitions", response = self.client.chat.completions.create(

"Decision boundaries between classes", model="gpt-4",

"Handling of multi-class scenarios", messages=[

“Unknown/other category handling” {"role": "system", "content": system_message},
1, {"role": "user", "content": user_message}
optimization_tips=[1.

“provide class descriptions with examples", temperature=0.1,

< 2 P . max_tokens=1000
"Use hierarchical classification if needed",
“Define overlap resolution strategies",

Include confidence calibration return response.choices[0].message.content.strip()

Pipeline Suggestion Beam Pipeline Orchestration

class BeamPipelineOrchestrator:

Orchestrates the entire flow from user goal to pipeline execution

def get_pipeline_suggestions(self, user_description: str) — List[PipelineTypel: def _init_ (self, prompt_assistant: LLMPromptAssistant):
e self.prompt_assistant = prompt_assistant

Suggest appropriate pipelines based on user description

Wi execute_pipeline_with_goal(self,

user_goal: str,

pipeline_type: PipelineType = None,

context: Dict[str, Any] = None) — Dict[str, Any]:

suggestion_prompt = f"""
Based on this user description: "{user_description}"

Available pipelines: o . P <
. L 5 R . . . Complete flow: user goal = optimized prompt - pipeline execution
{chr(10).join(f"- {pt.value}: {meta.description}" for pt, meta in self.pipeline_registry.items())} i

Which pipeline(s) would be most appropriate? Return only the pipeline names as a comma-separated list. # Step 1: Pipeline selection (if not provided)
ML if pipeline_type is None:
suggested_pipelines = self.prompt_assistant.get_pipeline_suggestions(user_goal)
if not suggested_pipelines:

raise ValueError("No suitable pipeline found for the given goal")
pipeline_type = suggested_pipelines[0] # Use first suggestion

response = self.client.chat.completions.create(
model="gpt-4",
messages=[{"role": "user", "content": suggestion_prompt}],

temperature=0.1, # Step 2: Generate optimized prompt

max_tokens=200 optimized_prompt = self.prompt_assistant.generate_optimized_prompt(
pipeline_type, user_goal, context

suggested_names = [name.strip() for name in response.choices[0].message.content.split(',')]
return [PipelineType(name) for name in suggested_names if name in [pt.value for pt in PipelineTypel] # Step 3: Execute BEAM pipeline with optimized prompt
pipeline_config = {
"prompt": optimized_prompt,
"input_topic": context.get("input_topic", "projects/default/topics/input"),
"output_table": context.get("output_table", "default:results.output")

This would trigger the actual BEAM pipeline execution
execution_result = self._execute_beam_pipeline(pipeline_type, pipeline_config)

return {
"pipeline_type": pipeline_type.value,
"user_goal": user_goal,
"optimized_prompt": optimized_prompt,
"execution_result": execution_result

4. Simplicity, Governance and the Future

Simplicity: Users state a high-level goal, not technical details. Our system handles the
complex prompt engineering, making powerful data processing incredibly simple to use.

Governance: The centralized pipeline repository ensures stondards and security.
Generated prompts prevent misuse and control LLM costs, providing a clear audit trail
for every run.

Cost Control: Optimized, machine-generated prompts are highly efficient. This reduces
token usage, controls operational costs, and makes LLM expenses predictable and
manageable for the business.

Future Scalability: Scaling is simple: add a new Beaom YAML file and a prompt template to
the repository. No complex code changes are needed to add new capabilities.

Tomi Ajakaiye

tomi@bluepodconsulting.com

https://www.linkedin.com/in/a-beryl/

3=AM

NYC 2025

