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The Pipeline Proliferation Problem: When you have a pipeline for everything, how do you empower users to
easily find and run the right one for their task?

Our Vision: Intent-Driven Data Processing: Moving beyond manual selection to a new paradigm where a
user simply states their goal and the system takes care of the rest.

The Pipeline Catalog: A Toolkit of Beam YAML Templates: How we build and maintain a set of standardized,
reusable, and highly optimized Beam YAML pipelines ready for execution.

Simplicity, Governance, and the Future: Discussing the powerful benefits of this approach and what's next
for our intent-driven platform.




The Pipeline Proliferation Problem
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A Victim of Our Own Success:

We love Apache Beam YAML Pipelines. Its power and flexibility allowed
us to build robust, scalable pipelines for dozens of critical business
tasks

A Pipeline for Everything:
We created highly-optimized, specialized pipelines for:

Real-time sentiment analysis

Pll redaction in customer feedback
Summarizing news articles
Converting data formats for archival

This specialization is great for efficiency and performance.

The Emerging Challenge:

o This success created a new kind of complexity. With so many
tools available, a critical question emerged:
How does a user, especially a non-technical one, know which
pipeline to use and when?




The Friction of Finding the Right Tool
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The Pipeline Proliferation Problem

Frustration Levels
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The Documentation Trap:

Ouir first instinct was to create documentation: wikis, READMESs, and decision
trees to guide users.

This solution quickly became the new problem.

Root Problems
« Incomplete wiki pages
* Outdated documentation
« No single source of truth
« Complex approval process
« Poor form design
« Lack of user guidance

Each step adds friction!

Why Documentation Fails at Scale:

Cognitive Overload: Users face a wall of choices. Is my task "summarization" or
‘entity extraction"? Do | need the streaming or batch version?

Instant Obsolescence: Documentation is outdated the moment a new pipeline
is added or modified. It's a constant source of maintenance debt.

The "Human Router” Bottleneck: We created a dependency on a few key
engineers who became the only ones who knew how to run the right job for the
right task.

The Beam YAML Paradox:

A user is still confronted with a list of files like sentiment_v2.yaml,
summarize_news.yaml, and redact_pii_streaming.yaml and has no clear path
to making the right choice




The Pipeline Proliferation Problem

The True Cost of Complexity
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The Path Forward

fundamentally change our
approach. We had to move
from a system where the user
finds the pipeline, to a system
where the pipeline finds the
user.
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2. Intent Driven Data Pipelines

New User Experience

A business user states their goal: Find negative reviews about shipping.”

The system generates an optimized prompt for the sentiment analysis pipeline:

"Analyze the following review for negative sentiment specifically related to 'shipping', ‘'delivery', or
'packaging'. Output 'True' if found, otherwise 'False'. Review: {review_text}"

User Goal Optimized Prompt
"Find negative reviews _> "Analyze review for
about shipping"
about

y Or

Output or

Review: {review_text}"




2. Intent Driven Data Pipelines

1. The Beam YAML Pipeline Repository:

e Thisis our foundation. We maintain a version-controlled library of expert-built, reusable Beam

pipelines. Each YAML file defines a specific capability (e.9., sentiment, summarization) and is designed
to accept o prompt as a parameter.

2. The LLM-Powered Prompt Assistant:

This is the core of our implementation. When a user selects a pipeline and states their goal, this
LLM-based service acts as a co-pilot.
It understands the requirements of the chosen Beam YAML pipeline and transforms the user's simple

goal into a structured, optimized prompt query that will yield the best results from the model inside
the pipeline.

3. Parameterized Pipeline Execution:
e The generated prompt isnt hard-coded. It's passed as a parameter at runtime when the Beom YAML

pipeline is executed. This makes our pipelines flexible and dynamically adaptable to a wide range of
user goals without ever changing the underlying pipeline code.




Intent Driven Data Pipelines

pipeline:
name: sentiment-analysis-pipeline
description: "Parameterized sentiment analysis pipeline using BEAM"

- name: AnalyzeSentiment
type: Map
config:
function: |
def analyze_sentiment(message):
import requests
import json

# Runtime parameters
parameters:
- name: analysis_prompt
type: string
description: "The prompt template for sentiment analysis"
required: true
name: input_topic
type: string
description: "Input PubSub topic"
required: true
name: output_table
type: string
description: "Output BigQuery table" "temperature': 0.1
required: true
name: model_endpoint
type: string response = requests.post(
description: "ML model API endpoint” "${model_endpoint}",
required: true json=payload,
headers={'Content-Type': ‘'application/json'}

# Use parameterized prompt
prompt = "${analysis_prompt}".format(text=message['text'])

payload = {
‘prompt’: prompt,
‘max_tokens': 100,

# Pipeline transforms
transforms:

- name: ReadMessages if response.status_code = 200:
type: ReadFromPubSub result = response.json()
config: return {

topic: "${input_topic}" 'id': message['id']
'text': message['text'],

- name: ParseJson ‘sentiment': result.get('sentiment', ‘'neutral'),
type: Map ‘confidence': result.get('confidence', 0.0)
config: ‘timestamp': message['timestamp']

function: | ¥
def parse_json(element): else:

import json

data = json.loads(element.decode('utf-8'))

return {
'id': data.get('id', ''),
‘text': data.get('text', ''),
'timestamp': data.get('timestamp', '')

return {
'id': message['id'],
‘text': message['text'],
'sentiment': 'error',
‘confidence': 0.0,
‘timestamp': message['timestamp']




Beam YAML Pipeline Catalog

Version-controlled library of expert-built,
reusable Beam pipelines. Each YAML
defines specific capabilities and accepts
prompts as parameters.

Building a Standardized Toolkit

e We created a central repository for all our
Beam YAML pipelines.

e Each pipeline is designed to be a modular

'skill" (e.9., sentiment analysis, Pll redaction).

e They are not just code; they are
standardized assets.

3. The Pipeline Repository: A toolkit for Beaom YAML templates

LLM Prompt Assistant Parameterized Execution

Al co-pilot that understands pipeline Dynamic pipeline execution with Al-
requirements and transforms user goals generated prompts passed as runtime
into structured, optimized prompts for parameters. Flexible and adaptable

maximum model performance. without changing pipeline code.

4 The rules of the Catalog

. Clear Naming & Versioning: sentiment-analysis.vl.yaml is
instantly understandable. Versioning in the filename and in
Git allows for safe, iterative improvements.

. Defined Interface: Every pipeline in the repository clearly
defines its expected inputs (e.g., a text field named
user_review) and outputs.

. Parameterization is Key: Most importantly, each pipeline is
designed to be configured at runtime, especially with the

\_ LLM prompt.
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3. The Pipeline Repository: A toolkit for Beaom YAML templates

The Pipeline Repository: Our Foundation for Scalability

To make our vision work, we had to stop treating pipelines as one-off scripts. Our core philosophy
is: Pipelines are products, not projects.

How We Build the Catalog:

Centralized & Version Controlled: Every pipeline lives in a single Git repository. This is our single source of truth,
allowing for branching, code reviews, and safe, iterative development.

Standardized Structure: Each YAML file follows a strict template. This consistency means anyone on the team can
understand a new pipelines structure at a glance.

Designed for Reusability: We don't build pipelines for a single use case. We build modular "skills"—like sentiment analysis
or summarization—that can be applied to many different data sources and goals.

How We Maintain the Catalog:

Clear Naming Conventions: A file is always named [skill].[version].yaml. There is never ambiguity about
what a pipeline does or which version is being used.

Separation of Concerns: The pipeline logic (the YAML) is kept completely separate from the application
logic (the prompt). This allows us to update one without breaking the other.




3. The Pipeline Repository: A toolkit for Beam YAML templates

Pipeline Repository Deployment

Git-based version control with automated deployment to production repository

Production Pipeline Repository

Versioned, production-ready pipeline templates
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3. The Pipeline Repository: A toolkit for Beaom YAML templates

Key Features:

e Goal-to-Prompt Translation: User says "‘analyze customer feedback for app updates”
— LLM generates optimized sentiment analysis prompt
Pipeline Intelligence: Understands requirements for different pipeline types
Context Awareness: Incorporates domain knowledge and specific use cases
Automatic Pipeline Selection: Suggests best pipeline based on user description




LLM Prompt Assistant Generate Optimized Prompt

def generate_optimized_prompt(self,
class LLMPromptAssistant: pipeline_type: PipelineType,
user_goal: str,
LLM-powered prompt assistant that transforms user goals into optimized context: Dict[str, Any] = None) — str:
prompts for BEAM YAML pipelines e
i Transform user goal into optimized prompt for the selected pipeline
pipeline_meta = self.pipeline_registry[pipeline_typel

def __init__(self, api_key: str):
context = context or {}

self.client = openai.OpenAI(api_key=api_key)

self.pipeline_registry = self._load_pipeline_registry() T

system_message = """

def _load_pipeline_registry(self) — Dict[PipelineType, PipelineMetadatal: Fou e . fexprE proni enginees ispeciaiizing T (pipéidne neka nanel

“Load metadata for all available BEAM pipelines""
return { Pipeline Details:
PipelineType.SENTIMENT_ANALYSIS: PipelineMetadata( - Purpose: {pipeline_meta.description}

name="Sentiment Analysis Pipeline", - Input Format: {pipeline_meta.input_format}
description="Analyzes emotional tone of text data", - Output Format: {pipeline_meta.output_format}
input_format="JSON with 'text' field",
output_format="sentiment classification with confidence",
prompt_requirements=[

“Clear sentiment categories (positive/negative/neutral)",

“Confidence scoring mechanism",

"Handling of ambiguous cases",

"Context consideration instructions"

Requirements for effective prompts:
{chr(10).join(+"- {req}" for req in pipeline_meta.prompt_requirements)}

Optimization Guidelines:
{chr(10).join(f"- {tip}" for tip in pipeline_meta.optimization_tips)}

Your task: Transform the user's goal into a structured, optimized prompt that will yield the best results from the model
1,
optimization_tips=[ Return ONLY the optimized prompt text, ready to be used in the pipeline.

"Use specific examples for edge cases",
"Define confidence thresholds clearly",
“Consider domain-specific language", # Create user message with goal and context
"Handle sarcasm and irony explicitly" user_message = f
User Goal: {user_goal}

),

PipelineType.TEXT_CLASSIFICATION: PipelineMetadata(
name="Text Classification Pipeline",
deseription=jtatedanl 265 teXn ANToVprSdorIhed fclassds!y Generate an optimized prompt for this pipeline that addresses the user's goal.
input_format="JSON with 'text' field",
output_format="class label with confidence score",

Additional Context:
{json.dumps(context, indent=2) if context else "None provided"}

prompt_requirements=[ # Call LLM to generate optimized prompt

"Clear class definitions", response = self.client.chat.completions.create(

"Decision boundaries between classes", model="gpt-4",

"Handling of multi-class scenarios", messages=[

“Unknown/other category handling” {"role": "system", "content": system_message},
1, {"role": "user", "content": user_message}
optimization_tips=[ 1.

“provide class descriptions with examples", temperature=0.1,

< 2 P . max_tokens=1000
"Use hierarchical classification if needed",
“Define overlap resolution strategies",

Include confidence calibration return response.choices[0].message.content.strip()




Pipeline Suggestion Beam Pipeline Orchestration

class BeamPipelineOrchestrator:

Orchestrates the entire flow from user goal to pipeline execution

def get_pipeline_suggestions(self, user_description: str) — List[PipelineTypel: def _init_ (self, prompt_assistant: LLMPromptAssistant):
e self.prompt_assistant = prompt_assistant

Suggest appropriate pipelines based on user description

Wi execute_pipeline_with_goal(self,

user_goal: str,

pipeline_type: PipelineType = None,

context: Dict[str, Any] = None) — Dict[str, Any]:

suggestion_prompt = f"""
Based on this user description: "{user_description}"

Available pipelines: o . P <
. L 5 R . . . Complete flow: user goal = optimized prompt - pipeline execution
{chr(10).join(f"- {pt.value}: {meta.description}" for pt, meta in self.pipeline_registry.items())} i

Which pipeline(s) would be most appropriate? Return only the pipeline names as a comma-separated list. # Step 1: Pipeline selection (if not provided)
ML if pipeline_type is None:
suggested_pipelines = self.prompt_assistant.get_pipeline_suggestions(user_goal)
if not suggested_pipelines:

raise ValueError("No suitable pipeline found for the given goal")
pipeline_type = suggested_pipelines[0] # Use first suggestion

response = self.client.chat.completions.create(
model="gpt-4",
messages=[{"role": "user", "content": suggestion_prompt}],

temperature=0.1, # Step 2: Generate optimized prompt

max_tokens=200 optimized_prompt = self.prompt_assistant.generate_optimized_prompt(
pipeline_type, user_goal, context

suggested_names = [name.strip() for name in response.choices[0].message.content.split(',')]
return [PipelineType(name) for name in suggested_names if name in [pt.value for pt in PipelineTypel] # Step 3: Execute BEAM pipeline with optimized prompt
pipeline_config = {
"prompt": optimized_prompt,
"input_topic": context.get("input_topic", "projects/default/topics/input"),
"output_table": context.get("output_table", "default:results.output")

# This would trigger the actual BEAM pipeline execution
execution_result = self._execute_beam_pipeline(pipeline_type, pipeline_config)

return {
"pipeline_type": pipeline_type.value,
"user_goal": user_goal,
"optimized_prompt": optimized_prompt,
"execution_result": execution_result




4. Simplicity, Governance and the Future

Simplicity: Users state a high-level goal, not technical details. Our system handles the
complex prompt engineering, making powerful data processing incredibly simple to use.

Governance: The centralized pipeline repository ensures stondards and security.
Generated prompts prevent misuse and control LLM costs, providing a clear audit trail
for every run.

Cost Control: Optimized, machine-generated prompts are highly efficient. This reduces
token usage, controls operational costs, and makes LLM expenses predictable and
manageable for the business.

Future Scalability: Scaling is simple: add a new Beaom YAML file and a prompt template to
the repository. No complex code changes are needed to add new capabilities.
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