Superpowering Agents
with Apache Beam

Konstantin Buschmeier

Jasper Van den Bossche
& Karel Haerens
Machine Learning Engineers @ MLé

SUMMIT

NYC 2025

What will be covered?

Superpowering Agents
with Apache Beam

Example Use Case
LLMs, Tool Calling & Agents

Agents & Beam

O,
)
O
O
O,
)
D

Use Case

> My candy company went viral & orders are through the roofl
> We use Apache Beam for many workflows & it's great!
> | received many urgent emails that need to be addressed:

> What is the total spent for customers that ordered by mail?

> | cannot wait for my engineering team to work on it.
> All attend the Summit.

Use Case: Possible Solution

Use Case

Process unstructured data

o\ A
\t“ Enrich with structured data
) _g Aggregate analytics
' — Gain insights & take action

..without the data team.

JAN

NYC 2025

LLMSs, Tool Calling & Agents

NYC 2025

Just use a chatbot!?

folele ([chatbot)

~ Powerful LLM

[Ask Anything...

\i, Upload
=2

folele ([chatbot)

~ Powerful LLM

Ask Anything...

[\i, Upload]

(000
R

Files

test/
transforms/
config.py

run.py

_ —_—

IDE

~

import apache_beam as beam

from apache_beam.ml.transforms.base import
MLTransform

from apache_beam.ml.transforms.tft import
ScaleToO1

import tempfile

data =[
{
'x" [1, 5, 3]
i
{
'x": [4, 2, 8]
3
|

artifact_Llocation = tempfile.mkdtemp()
scale_to_0_1_fn = ScaleToO1(columns=['x"])

with beam.Pipeline() as p:
transformed_data = (
P
| beam.Create(data)
|
MLTransform(write_artifact_location=artifact_locati
on).with_transform(
scale_to_0_1_fn)

| beam.Map(print))

&

> Add BQ sink to pipeline

Planning pipeline
implementation

Let me search relevant code
first.

Searching code...

I'll add a sink to the end of the
pipeline that writes to BQ.

Now let me add a transform
that formats the data correctly.

Finally, I'll add a test.

~N

_
—

Plan, search, build...

_J
=

| _ J |

\

Text generation
Image Generation

Structured Output

Audio Generation

Long Contexts

Video Generation Tool Ca"ing

Code Execution

Reason?ng

LLMs

Output
Probabilities

Text Uno(erstomo(ing
Multimodality

Image U no(erstomohng

Audio Uno(erstomo(ing

Video Uno(e_rstomo(ing

Document Uno(erstomo(iv\g

Web Search

Coo(ing Models

Embedding

(shifted right)

From Prompts to Agents

Cb\ain-o‘F-’Cl«ougL\t Reasoning

wWorkfl
Augmentation orkriows Plamning

Prompting Agentic workflows

Tools

7\ 7\ 7\
\\4 U/ U/
Agents Multi-agents

A Weather Agent

> You are a helpful agent.
> Your objective is to complete the user’s tasks.

> You have access to the following tools:
> {get_weather <city_name>}
> {chance_of_rain <city_name>}

A Weather Agent

User: What's the weather in New York?

LLM: (get_weather New York)

X get_weather(location="New York") — 102F
LLM: The weather in New York is 102F today.

A Basic Beaom Agent

> You are a helpful agent.
> Your objective is to complete tasks using Beam.

> You have access to the following tools:

> {list_available_datasets}
> {create_beam_pipeline}
> {run_beam_pipeline}

> {read_results}

-
O
Q
af
%o
V)
)
C
)
@)
<

NN 3 W
e e

Q ==Y <~ -

—

/
Write Ptpehne

Submit & wmonitor

Run PiPeh"e loca"(/ Dataflow Pipehv\e

Y &

.'
‘ Z: % % Documentation
a % a Lookup

Dataset Li(:rary

7NN
(7 1%V

R

] 7
A\ 7\

List APIs Web Search Bug Fixer

T

ource Library

A
-9
e

Transform Library 6

def run_python_pipeline(pipeline_file: str, folder: str = PYTHON_PIPELINES_FOLDER,

parameters: dict = {}) —> str:
"""Run a python beam pipeline.

Parameters are a dict to pass to the pipeline.
Make sure that the arguments are valid for the run function of the pipeline.

Args:
pipeline_file (str): Name of the python module pipeline to run.
folder (str): Folder to read the python module from.
parameters (dict): A dict to pass to the pipeline run() function.
These are passed to the run function of the pipeline.

Returns:

str: Output of the pipeline.
pipeline_module_path = f"{folder[2:1}.{pipeline_file[:-3]1}"
pipeline_module = importlib.import_module(pipeline_module_path)

output_file = pipeline_module.run(parameters)
Exception H
error_msg = (f"Error running pipeline: {e} Consult example pipelines!")
{"status": "error", "error_message": error_msg}
{"status": "success", "output_file": output_file}

BEAM SUMMIT NYC 2025

00

def write_python_pipeline(pipeline_file: str, code: str,
folder: str = PYTHON_PIPELINES_FOLDER) —-> str:
"""Write a python pipeline to the given path. NOT A YAML PIPELINE.

Args:
pipeline_file (str): Name of the file to write.
code (str): Code to write. Code should contain a run function that
takes an input file and an output file as arguments,
not a "if _ _name__ == '__main__':" block.
folder (str): Folder to write the code to.

Returns:
str: Name of the file written.

pipeline_file

BEAM SUMMIT NYC 2025

Qe-» 00t

00

def list_reusable_transforms(
folder: str = PYTHON_REUSABLE_TRANSFORMS_FOLDER) —> list[str]:
"""l ist all available, reusable Beam transforms in the given folder.

Args:
folder (str): Folder to list reusable transforms from.

Returns:
list[str]: List of paths to the reusable transforms in the given folder.

transforms

BEAM SUMMIT NYC 2025

(m} =

OD"’O<l —
‘ 00
def list_example_python_pipelines(folder: str = PYTHON_EXAMPLES_FOLDER) —> list[str]:
"M ist all example python beam pipelines in the given folder.
)
Args:
g:) folder (str): Folder to list python beam pipelines from.

list[str]: List of paths to the python beam pipelines in the given folder.

[;J Returns:

example_pipelines

BEAM SUMMIT NYC 2025

00

def list_dataset_files(folder: str = DEFAULT_DATASET_PATH) —> list[str]:
"M ist the available dataset files in the given path.

Can be csv, txt, json, a folder of files, images, etc.
Also includes the first line of the file.

Args:
folder(str): Path to the folder to list dataset files from .

Returns:
list[dict]: List of dictionaries with the filename & first line of the file.

dataset_info

BEAM SUMMIT NYC 2025

00

def list_available_llms() -> list[dict]:
"M ist all available large language models LLMs.

Only available models can be integrated into Beam pipelines.

Returns:
list[dict]: List available LLms. Each model contains a human readable
name and a model _id that is the exact identifier to use in code.

available_1l1lms

BEAM SUMMIT NYC 2025

NN 3 W
e e

Q ==Y <~ -

—

/
Write Ptpehne

Submit & wmonitor

Run PiPeh"e loca"(/ Dataflow Pipehv\e

Y &

.'
‘ Z: % % Documentation
a % a Lookup

Dataset Li(:rary

7NN
(7 1%V

R

] 7
A\ 7\

List APIs Web Search Bug Fixer

T

ource Library

A
-9
e

Transform Library 6

% Agent Development Kit (ADK)

Simpliﬁes Tool Ca"ing

_- Plan-act-observe Loop

'

Evaluation _

d \
S o

% Agent Development Kit (ADK)

4
1
I

(

A

/
4
-——-
-,
s

Integrates with GCP:
manage & deploy Sessions

Tools

Reasoning /—\

Environment

Observe

Agent Development Kit Dev X +

2> i@ @® http://127.0.0.1:8000/dev-ui/ (U} 3 @ Relaunch to update :

ED, Agent Development Kit

Select an agent

beam_agent

multi_tool_agent

Welcome to ADK!
Select an agent on the left to begin with.

BEAM SUMMIT NYC 2025

Agent Development Kit Dev X +

] @® http://127.0.0.1:8000/dev-ui/?app=beam_agent

P Agent Development Kit 181}

beam_agent

Trace Events State Artifacts

Invocations

SESSION ID 9fcb201f-747a-42ff-81d0-923e11049bfe e

0 3 @

Token Streaming ‘ + New Session [iI]

Type a Message...

v

Relaunch to update :

BEAM SUMMIT NYC 2025

Agent Development Kit Dev X +

C @® http://127.0.0.1:8000/dev-ui/?app=beam_agent (U} @ Relaunch to update :

SESSION ID 9fcb201f-747a-42ff-81d0-923e11049bfe (@) Token Streaming | + New Session [

P Agent Development Kit [

beam_agent

Trace Events State Artifacts

Invocations

Can you write and run an Apache Beam pipeline that
reads in all emails, extracts information category "order"
or "other" as well as "sender name" and "sender
company name" using an LLM?

0] 4 (7

BEAM SUMMIT NYC 2025

Agent Development Kit Dev X +

] @® http://127.0.0.1:8000/dev-ui/?app=beam_agent

ED, Agent Development Kit

beam_agent

Trace Events State Artifacts

Invocations

SESSION ID 9fcb201f-747a-42ff-81d0-923e11049bfe e

(=]

(U} @ Relaunch to update :

Can you write and run an Apache Beam pipeline that reads in all emails, extracts
information category "order" or "other" as well as "sender name" and "sender company
name" using an LLM?

Type a Message...

v

Token Streaming ‘ -+ New Session @ R

BEAM SUMMIT NYC 2025

=) Agent Development Kit Dev *

+

@® http://127.0.0.1:8000/dev-ui/?app=beam_agent

(

t:\" Agent Development Kit

beam_agent

Events

Conversations

0 functionCall:list_dataset_files
I functionResponse:list_dataset_files
2 functionCall:list_available_lims

3 functionResponse:list_available_lims

Artifacts

+ Events | Trace |

(U} @ Relaunch to update :

SESSION ID 9fcb201f-747a-42ff-81d0-923e11049bfe e Token Streaming ‘ -+ New Session E 02

(4]

information category "order" or "other" as well as "sender name" and "sender company

Can you write and run an Apache Beam pipeline that reads in all emails, extracts e
name" using an LLM?

4 list_dataset_files
v list_dataset_files

Okay, | can do that. First, | will identify the email files that need to be processed. The
list_dataset_files function shows that the emails are in the datasets/emails
directory. | will now create a plan to build the pipeline.

Plan:

1. List available LLMs: I'll start by listing the available LLMs to choose one for our
task.
2. Examine an existing pipeline: | will look for an example pipeline that uses an
LLM to understand how to integrate the LLM into the pipeline.
(=] 3. Write the pipeline: I'll write a new Python pipeline that:
o Reads all the email files from the datasets/emails directory.
o For each email, it will use the chosen LLM to extract the category ("order"
or "other"), sender name, and sender company name.

o Writes the extracted data to a JSONL file.

Type a Message...

v

BEAM SUMMIT NYC 2025

= Agent Development Kit Dev X -+

C @® http://127.0.0.1:8000/dev-ui/?app=beam_agent (U} 3 @ Relaunch to update :

SESSION ID e2ea3e53-54a9-4fdd-8893-744a4fca2113 e Token Streaming ‘ + New Session]E[

ED Agent Development Kit

beam_agent

Trace Events State Artifacts

Invocations

Can you write and run an Apache Beam pipeline{ -~

Invocation ID: e-7e594892-558f-4106-a7c1-abf4f42e494b

|=> invocation

_zt agent_run [beam_agent]

E] call_lim

| execute_tool lis...

El call_llm

|=> execute_tool lis...

E] call_llm

| execute_tool lis...

E] call_llm

|- execute_tool re...

El call_llm

| execute_toolre...

156360.28ms

156354.15ms

55007.94ms

99.10ms

77159.17ms

2.27ms

57688.02ms

4.41ms

138636.76ms

22.62ms

66958.82ms

5.43ms

Type a Message...

v

BEAM SUMMIT NYC 2025

google.adk.agents

root_agent = Agent/(
name="beam_agent",
model="gemini-2.5-pro",
description=(
"Agent to create and run Apache Beam pipelines."
),
instruction
You are a helpful agent and brilliant data scientist who can create
and run Apache Beam pipelines for analytics in python.
You work in steps, always starting with a plan, and then executing the plan.
Do not just make up code. If possible use the example pipelines or
the internet as a reference.
Even for seemingly simple steps, consult the example pipelines
to validate your code.
When you hit an error, you consult the internet to find a solution,
or the example pipelines for help.
You work in small steps, and use test pipelines to verify your code.
You only move on to the next step when you are sure the current step is working.
always test out new pipelines with a limited dataset,
and then scale up to the full dataset.
Your final pipeline should be able to execute the task in a single run.

BEAM SUMMIT NYC 2025

root_agent = Agent(

tools=[
List datasets & read files
tools. list_dataset_files,
tools. list_results,
tools.read_head_of_file,
tools.read_whole_file,
List and read examples & generated code
tools. list_reusable_transforms,
tools.read_reusable_transform,
tools. list_example_python_pipelines,
tools.read_example_python_pipeline,
tools. list_generated_python_pipelines,
tools.read_generated_python_pipeline,
tools. list_available_1l1lms,
Write and run pipelines
tools.write_python_pipeline,
tools.run_python_pipeline,

Agents

AgentTool(agent-=search_agent),

BEAM SUMMIT NYC 2025

o0

root_agent = Agent(

planner=BuiltInPlanner(

thinking_config=ThinkingConfig(
include_thoughts=False, thinking_ budget=1024

BEAM SUMMIT NYC 2025

A drama in three acts

Use case objective

1. Create a single pipeline that
2. Processes the received emails &
3. Returns the total spent for order emails

Act 1

> Can you write and run an
Apache Beam pipeline that
reads in all emails, extracts
information category ‘order” or
‘other” as well as 'sender name’
and "'sender company hame’
using an LLM?

Can you write and run an Apache Beam pipeline that reads in all emails, extracts information category "order" or
"other" as well as "sender name" and "sender company name" using an LLM?

BEAM SUMMIT NYC 2025

> Can you write and run an
Apache Beam pipeline that

reads in all emails, extracts

information category ‘order” or
‘other” as well as 'sender name’
and "'sender company hame’
using an LLM?

List datasets

List LLMs

N0\

List example pipelines —»

Select Um_transform.py —»
Read example pipeline —»

a
(=]
(=]
[=]
a
a
a
=]
=]
a
(=]
(=]
a
a
a

Can you write and run an Apache Beam pipeline that reads in all emails, extracts information category “order" or
"other" as well as "sender name" and "sender company name" using an LLM?

Of course. Let's start by analyzing the available datasets.

4 list_dataset_files

v list_dataset_files

I'll get started by analyzing the available LLMs.

4 list_available_lims

v list_available_lims

I'll use gemini-2.0-flash to build the categorization and extraction pipeline. First, I'll examine the emails
dataset to understand its structure.

4 read_head_of_file

v/ read_head_of file

I'll now list the example pipelines to find a good starting point for our task.

4 list_example_python_pipelines

v list_example_python_pipelines

The 1lm_transform. py example seems like a good fit. I'll read its content.

4 read_example_python_pipeline

v/ read_example_python_pipeline

BEAM SUMMIT NYC 2025

Plan

Write pipeline

Run pipeline

List results

Read results

0

o
=]
a
[=]
=]
[—]
[—]
[=]
[=]
[=]
a
=]

This is a great starting point. I'll modify it to suit our needs. | will also change the CombineGlobally transform
to fileio.MatchFiles and fileio.ReadMatches to read all the files in the emails directory, as we need to
process each email individually. | will also simplify the pipeline by removing the command-line argument parsing
and hardcoding the input and output paths for now. Finally, | will change the LLM model to gemini-2.0-flash.

Here is the plan:

1. Create a new pipeline file named email_categorization_pipeline.py.

2. Modify the run function to read all files from the datasets/emails folder.

3. Update the CallGeminiText DoFn to use the gemini-2.0-flash model.

4. Define a prompt to extract the "category", "sender name", and "sender company name" from each email.
5. Write the extracted data to a JSONL file.

6. Run the pipeline and inspect the results.

I'll start by creating the pipeline file.

4 write_python_pipeline

v/ write_python_pipeline

Now | will run the pipeline with a limited number of files to test it. I'll modify the MatchFiles pattern to read only
one file for now.

4 run_python_pipeline

v/ run_python_pipeline

The pipeline ran successfully. I'll now inspect the output to see if the results are as expected.

4 list_results

v list_results

I'll read the head of the output file to check the results.

4 read_head_of_file

v/ read_head_of_file

BEAM SUMMIT NYC 2025

Eval results
Run full pipeline

Confirm success

The results look great. The pipeline correctly extracted the requested information from the emails and categorized
them as "order" or "other". The sender's name and company name have also been extracted correctly. The
pipeline is ready to be used on the full dataset. | am confident in the solution.

The pipeline has been created and tested. It reads all emails from the datasets/emails directory, extracts the
category, sender name, and sender company name using the gemini-2.@-flash LLM, and writes the results
to a JSONL file in the output folder. The pipeline is robust and can be used to process all the emails in a single
run.The pipeline ran successfully and the output is as expected. I'll now delete the generated pipeline.

v/ run_python_pipeline

4 run_python_pipeline

| have successfully created and executed an Apache Beam pipeline that processes all emails in the
datasets/emails directory. The pipeline uses the gemini-2.0-flash large language model to extract the
email category (“order" or "other"), sender's name, and sender's company name.

The extracted information has been saved in a JSONL file located at output/categorized_emails-00000—
0f-00001.jsonl.

The task is now complete. Please let me know if you have any other requests.

What's the name of the created pipeline

The created pipeline is named email_categorization_pipeline.py.

BEAM SUMMIT NYC 2025

class CallGeminiText(beam.DoFn):
"""This DoFn makes an LLM call to Gemini to extract information."""
def _extract_json_from_response(self, response_text):
"""Extract JSON from response text, handling backticks if present."""

_parse_json_with_retry(self, response_text):
"""parse JSON with retry logic."""

process(self, element):
"""Build prompt, call Gemini, parse JSON, return fields."""
logging.basicConfig(level=1logging.INFO)

Build the prompt with field

prompt_template = self.extraction_prompt.format(
text=element.read().decode('utf-8'),
fields=", ".join(self.fields_to_extract)

)

content = [Part.from_text(prompt_template)]

response = self.model.generate_content(content)

text_response = response.text

parsed_json = self._parse_json_with_retry(text_response)
json.dumps (parsed_json)

BEAM SUMMIT NYC 2025

def run(input_folder, output_file):
"""Run the text LLM transform pipeline."""

prompt """Extract the following info from text & return JSON:
Text: {text}
Please extract these fields: {fields}
The category should be either "order" or "other".
fields_to_extract ["category", "sender_name", "sender_company_name"]
beam.Pipeline() pipeline:
files (
pipeline

"MatchFiles" fileio.MatchFiles(os.path.join(input_folder, 'k.txt'))
"ReadMatches" fileio.ReadMatches()

)
responses
files
_> "Call Gemini to extract data" beam. ParDo(
CallGeminiText(prompt, fields_to_extract, model_id="gemini-2.0-flash"))
"Write results" beam.io.WriteToText (
output_file, file_name_suffix="'.jsonl', num_shards=1)

output_file

BEAM SUMMIT NYC 2025

Matched
Patb\ —»| Match Files —’e Read Matches @ Write To File

Use case objective

1. Create a single pipeline that
2. Processes the received emails & V4
3. Returns the total spent for order emails

Act 2

> Great. Can you extend this

beam pipeline such that it

filters the categorized email

entries on category being

‘order” and outputs elements

that contain the company

name, customer number, and

category. Then combine each

entry with all orders that they —p» e s o e e o e v cson ercorsre ()
placed and calculate the total.

BEAM SUMMIT NYC 2025

> Great. Can you extend this
beam pipeline such that it
filters the categorized email
entries on category being
‘order” and outputs elements
that contain the company
name, customer number, and
category. Then combine each

entry with all orders that they —p
placed and calculate the total.

Read customer data —»

Read order data _—

Great. Can you extend this beam pipeline such that it filters the categorized email entries on category being
"order" and outputs elements that contain the company name, customer number, and category. Then combine
each entry with all orders that they placed and calculate the total.

Of course. Let's start by analyzing the customer_profiles.csv and order_ledger. csv datasets to
understand their structure.

4 read_head_of_file

4 read_head_of_file

v read_head_of file

v read_head_of file

Read join_pipeline.py —»

Plan

Write pipeline

Run pipeline

Pipeline failed:
incorrect path

>

I'll start by examining the join_pipeline.py example pipeline to see how to perform joins in Apache Beam.

4 read_example_python_pipeline

v/ read_example_python_pipeline

| have analyzed the customer_profiles.csv and order_ledger.csv files and the join_pipeline.py
example. | will now create a new pipeline that extends the previous functionality to join the categorized emails

with customer and order data, and then calculate the total order amount for each customer.
Here is the plan:

1. Create a new pipeline file named customer_order_analysis.py.
2. The pipeline will read data from three sources:
o The categorized emails from the previous pipeline's output.
o The customer_profiles.csv file.
o The order_ledger.csv file.
3. The pipeline will then perform the following steps:
o Filter the categorized emails to only include those with the category "order".
o Join the filtered emails with the customer profiles on the company name.
o Join the result with the order ledger on the customer ID.
o Group the final joined data by company and calculate the total order amount.
o Write the results to a new JSONL file.

1 will now create the new pipeline file.
4 write_python_pipeline

v/ write_python_pipeline

| have created the customer_order_analysis. py pipeline. Now, | will run it with the necessary input files and
check the output.

4 run_python_pipeline

v/ run_python_pipeline

The pipeline failed because it requires the input file paths to be passed as parameters. | will now run the pipeline
again, but this time | will provide the correct paths for the categorized emails, customer profiles, and order ledger

files, as well as the output file path.

BEAM SUMMIT NYC 2025

Run with correct

parameters

Read results

Analyse error:
incorrect key for join

Write pipeline

Run pipeline

Read results

ODODOOO

0

(=]
=]
=]
(=]
=]
[=]
=]
=]

4 run_python_pipeline

v/ run_python_pipeline

The pipeline ran successfully. I'll now inspect the output to see if the results are as expected.

4 read_head_of_file

v read_head_of_file

The pipeline ran successfully and produced the expected output, but there is an issue with the company name
not being correctly populated in the output. This is happening because the CoGroupByKey operation is not
correctly matching the company names from the customer profiles with the orders. | need to debug the pipeline
to fix this issue. | will start by inspecting the ProcessCustomerJoin step to see how the data is being
processed after the first join. | suspect there might be a mismatch in the keys being used for the join.

1 will add a debugging step to the pipeline to write the output of the ProcessCustomerJoin stepto a
temporary file so | can inspect it.

4 write_python_pipeline

v/ write_python_pipeline

| have created the customer_order_analysis_debug. py pipeline. Now, | will run it and inspect the debug
output.

4 run_python_pipeline

+/ run_python_pipeline

| will now inspect the debug output file to understand why the company names are not being correctly
propagated.

4 read_head_of_file

v read_head_of_file

BEAM SUMMIT NYC 2025

Analyse error:
Type mismatch

Write pipeline

Run pipeline

Read results

Read results

0

a
a
[=]
[=]
(=}
(=]
=]
(=]

0

I've inspected the debug output and it seems that the ProcessCustomerJoin step is working correctly. The
issue is in the final join with the order ledger. The customer_id from the customer profiles is not matching the
buyer_id in the order ledger. | need to take a closer look at the data in both files to understand the discrepancy.

Atfter reviewing the customer_profiles.csv and order_ledger.csvV files, | see that the customer_id in
customer_profiles.csv is an integer, while the buyer_id in order_ledger.csv is also an integer, but
they are being read as strings. | need to cast both to integers before the join.

1 will now create the final version of the pipeline with the fix. | will also remove the debug output step.

4 write_python_pipeline

+ write_python_pipeline

| have created the final version of the pipeline, customer_order_analysis_final.py. | will now run it and
check the output.

4 run_python_pipeline

+/ run_python_pipeline

| will now inspect the final output to ensure that the company names are correctly populated.

4 read_head_of_file

v/ read_head_of file

The pipeline has been successfully extended to filter for "order" category emails, join with customer and order
data, and calculate the total spend for each customer. However, there are still some "N/A" values for the
company name, which indicates that there are orders in the order_ledger. csv file for which there is no
corresponding customer in the customer_profiles.csv file. This is a data consistency issue that cannot be
solved by the pipeline alone. The pipeline is correctly identifying and processing the available data.

The final output is stored in the output/customer_order_spend_final-00000-0f-00001. jsonl file. The
pipeline is robust and can be used for further analysis. | am confident in the solution.

Can you combine the first and this last pipeline such that it does the analysis in the same pipeline without reading
from an intermediate file?

BEAM SUMMIT NYC 2025

000

class ParseCSV(beam.DoFn):
def process(self, element):

def run(categorized_emails_file, customer_profiles_file, order_ledger_file, output_file):
beam.Pipeline() pipeline:
categorized_emails = (
pipeline
"ReadCategorizedEmails" beam. io.ReadFromText (categorized _emails_file)
"ParseEmails" beam.Map(json. loads)
)
customer_profiles
pipeline
"ReadCustomerProfiles" beam. io.ReadFromText (

customer_profiles_file, skip_header_lines=1)

_> "ParseCustomerProfiles" beam.ParDo(ParseCSV(
"customer_id, company_name,contact_email,business_area,office_address"))
""KeyByCustomerCompanyName" beam.Map(lambda x: (x['company_name'l, x))

)
order_ledger
pipeline
"ReadOrderLedger" beam. io.ReadFromText (
order_ledger_file, skip_header_lines=1)
_> "ParseOrderLedger" beam.ParDo(ParseCSV(
"order_id,product_id,quantity,buyer_id, product_name,order_date,price,total"))
"KeyByBuyerId" beam.Map(lambda x:
(int(x['buyer_id']), {'total': float(x['total'l) x['total'l 0.0}))

BEAM SUMMIT NYC 2025

00

def run(categorized_emails_file, customer_profiles_file, order_ledger_file, output_file):

orders = (
categorized_emails
"FilterOrders" beam.Filter(lambda x: x.get('category') 'order')
""KeyByCompanyName" beam.Map(lambda x: (x['sender_company_name'l, x))
)
customer_orders = (
({'orders': orders, 'customers': customer_profiles})
"JoinWithCustomers" beam.CoGroupByKey ()

"ProcessCustomerJoin" beam.FlatMap(lambda x: [

{

"customer_id": int(customer['customer_id'l),
"company_name": x[0],
"category": order['category']

order x[1]1['orders']
customer x[1]1["'customers']

BEAM SUMMIT NYC 2025

00

def run(categorized_emails_file, customer_profiles_file, order_ledger_file, output_file):

customer_order_totals (
({'customers': customer_orders
"KeyByCustomerId" beam.Map(lambda x: (x['customer_id'l, x)),
'orders': order_ledger})
"JoinWithOrders" beam. CoGroupByKey ()
"CalculateTotal" beam.Map(lambda x: {

"company_name": list(x[1]['customers'])[0]['company_name']
x[1]['customers'] UN/ALS
"customer_id": x[0],
"total_spend": sum([order['total'] order x[11['orders'1])
1)
"FilterNonZeroSpend" beam.Filter(lambda x: x['total_spend'] 0)
"FormatOutput" beam.Map(json.dumps)
)

customer_order_totals "WriteResults" beam.io.WriteToText(output file)

BEAM SUMMIT NYC 2025

Y

ReadFromText

-
)

ReadFromText

——
MY

ReadFromText

M

Load JSON

—
M\

ParseCsSV

- J

)
Filter
‘orders”

———

Map:
(COMP“V\V_V\GME‘

compam/o(ata)

MY

Map:
(buyer_id, total)

—

CoGroupBl’Kel/

CoGroupByKey —>

Use case objective

1. Create a single pipeline that
2. Processes the received emails & V4
3. Returns the total spent for order emails v

Act 3

> Can you combine the first and okl St Dt -
this last pipeline such that it
does the analysis in the saome
pipeline without reading from
an intermediate file?

BEAM SUMMIT NYC 2025

> Can you combine the first and
this last pipeline such that it
does the analysis in the saome
pipeline without reading from
an intermediate file?

Plan

Write pipeline

Run pipeline

List results >

Completed task
unified_pipeline.py

0

[=]
(=}
[=]
a
(=]
[=]
a
(=]

0

Can you combine the first and this last pipeline such that it does the analysis in the same pipeline without reading
from an intermediate file?

Of course. | will now combine the two pipelines, email_categorization_pipeline.py and
customer_order_analysis_final.py, into a single, unified pipeline that performs the entire analysis in one
go without using any intermediate files.

Here is the plan:
1. Create a new pipeline file named unified_email_analysis.py.
2. The new pipeline will first read all the emails from the datasets/emails directory.
3. It will then use the CallGeminiText DoFn to categorize each email and extract the sender's information.
4. The output of the LLM will be a PCollection of dictionaries.
5. This PCollection will then be filtered, joined with customer and order data, and aggregated to calculate the
total spend per customer, all within the same pipeline.
6. The final result will be written to a single output file.

| will now create the new pipeline file.

4 write_python_pipeline

v write_python_pipeline

| have created the unified pipeline, unified_email_analysis.py. Now, | will run it and check the output.

4 run_python_pipeline

v/ run_python_pipeline

| will now inspect the final output to ensure that the entire unified pipeline works as expected.

4 read_head_of file

v/ read_head_of_file

| have successfully combined the two pipelines into a single, unified pipeline named
unified_email_analysis.py. This pipeline now performs the entire end-to-end analysis, from reading raw
emails to calculating the total order spend for each customer, without the need for any intermediate files.

The final output is stored in the output/unified_analysis_output-00000-0f-00001. jsonl file and is
consistent with the output of the previous, multi-step process.

The task is now complete. Please let me know if you have any other requests.

BEAM SUMMIT NYC 2025

o0

class CallGeminiText(beam.DoFn):

class ParseCSV(beam.DoFn):

def run(input_folder, customer_profiles_file, order_ledger_file, output_file):
beam.Pipeline() pipeline:
prompt IIIIII. . .IlIIII

fields_to_extract ["category", "sender_name", "sender_company_name"]

BEAM SUMMIT NYC 2025

000

def run(input_folder, customer_profiles_file, order_ledger_file, output_file):

emails = (

pipeline
"MatchFiles" fileio.MatchFiles(os.path.join(input_ folder, 'x.txt'))
"ReadMatches" fileio.ReadMatches()

)
categorized_emails = (

emails
"CategorizeEmails" beam.ParDo(CallGeminiText(prompt, fields_to_extract))
)
orders = (
categorized_emails
"FilterOrders" beam.Filter(...)
""KeyByCompanyName" beam.Map(...)

)
customer_profiles = (

pipeline
"ReadCustomerProfiles" beam.io.ReadFromText(...)
"ParseCustomerProfiles" beam.ParDo(ParseCSV(...))
""KeyByCustomerCompanyName" beam.Map(...)

)
order_ledger = (

pipeline
"ReadOrderLedger" beam.io.ReadFromText(...)
"ParseOrderLedger" beam.ParDo(ParseCSV(...))
"KeyByBuyerId" beam.Map(...)

BEAM SUMMIT NYC 2025

000

def run(input_folder, customer_profiles_file, order_ledger_file, output_file):

customer_orders = (
({'orders': orders, 'customers': customer_profiles})

"JoinWithCustomers" beam.CoGroupByKey ()
"ProcessCustomerJoin" beam.FlatMap(lambda x: [
{

"customer_id": int(customer['customer_id']),
"company_name": x[0],

order x[1]1['orders']
customer x[11['customers"']
1)
)
customer_order_totals = (
({'customers': customer_orders

"KeyByCustomerId" beam.Map(...),
'orders': order_ledger})
"JoinWithOrders" beam.CoGroupByKey()
"CalculateTotal" beam.Map(lambda x: {
"'company_name": ...,
"customer_id": ...,
"total_spend":
1)
"FilterNonZeroSpend" beam.Filter(lambda x: x['total_spend'] 0)
"FormatOutput" beam.Map(json.dumps)
)
customer_order_totals "WriteResults" beam.io.WriteToText (output_file)

BEAM SUMMIT NYC 2025

Use case objective

1. Create a single pipeline that v
2. Processes the received emails & V4
3. Returns the total spent for order emails v

Agent is able to solve the use casel The Good & the Bad
..out not always in one go.

Beam tools enable data processing at scale with robust built-ins.
Examples transforms help. Instruct agent to use them where possible.
Defining tools correctly is crucial & requires iteration.

Python pipelines work better than YAML pipelines.

Data engineers are not obsolete:
Validation is important & works best step-by-step.

NYC 2025

More tools

Transform library

Search documentation tool
Tools combinations

Cloud Runners &
Streaming Pipelines

Defining tools is the new
prompt engineering

NYC 2025

Taking it Further

Standardize tools using Model
Context Protocol (MCP)

Evaluation
Proactivity reporting

Defined Beam Schemas

Food for Thought

How to make a framework successful in the era Al-assisted coding?

NYC 2025

Summary

Superpowered agent with
beam tools to solve the use case.

Tools enable LLMs to act.

With reasoning & planning they
can solve complex tasks.

Defining tools is the new prompt
engineering.

Human-in-the-loop & step-by-step

Konstantin Buschmeier
Jasper Van den Bossche & Karel Hoerens

QUESTIONS?

MLG is hiring
& https://jobs.ml6.eu/

JAN

NYC 2025

