Talk to your pipeline: use Al to
create dynamic transforms in streaming

Kfir Naftali & Israel Herraiz

Streaming inference

Beyond just calling a model,

what does mean to be able to make

real time inference?

Kfir Naftali Israel Herraiz

Beam ML and turnkey transforms

How to prepare your data for a dynamic transformation?

Side inputs: questions and code

Conclusions & sample repositories

_
>
=
®
Q
0

Beam ML: Run inference

https://beam.apache.org/documentation/ml/overview/

/
model handler = PytorchModelHandlerTensor (

state dict path='gs://path/to/my model.pt',
model class=my model class,
model params={'input dim': 1, 'output dim': 1},
)
with beam.Pipeline (options=pipeline options) as p:
(P
| beam.io.ReadFromPubSub (my topic)
| beam.Map (preprocess)
| beam.ml.inference.RunInference (model handler=<config>)

| beam.Map (post process)

What models can | use with Runinference?

e Local models

-rk3r155()rfIC)Vv example = ["translate English to Spanish: We are in New York City."]

F))/11)r(:r] pipeline = beam.Pipeline(options=PipelineOptions(save_main_session=True,pickle_library="cloudpickle"))
VLLM with pipeline as p:
sklearn =% L

"Create Examples" >> beam.Create(example)
"To tensors"” >> beam.Map(to_tensors, tokenizer)
"RunInference"
>> RunInference(
model_handler,
inference_args={"max_new_tokens": MAX_RESPONSE_TOKENS},

p
|
|
|

)

| "From tensors"” >> beam.Map(from_tensors, tokenizer)
| "Print” >> beam.Map(print)

Estamos en Nueva York City.

https://cloud.google.com/dataflow/docs/notebooks/run_inference generative_ai

Local models? Aren’t those too heavy?

Memory management
e Model sharing within process
o RunlInference takes care of that by default
e Model sharing across processes?
o Available with large_model=true

>>> model_handler = PytorchModelHandlerTensor(
model_class=LinearRegression,
large_model=True,

Dataflow Worker

O

0,

o)
O}

model_params={'input_dim': 1, 'output_dim': 1},

state_dict_path="gs://path/to/model.pt")

Model Manager

Python process

What models can | use with Runinference?

e Remote models
o HuggingFace, TensorflowHub, Vertex Al endpoints
o Really, anything that you can call from your pipeline (custom handler)

Implementing a ML Pipeline with Google Al Studio

Presented at Beam College 2025

This tutorial demonstrates how to perform streaming inference with Apache Beam and Google Al Studio’s Gemini model,
based example to get country capitals.

It covers:

1. Setup

2. Prompt Engineering in Gemini

3. Building an ML pipeline with Beam
4. Running the pipeline

Resources:

« starting_(blank) notebook
o Notebook with solution

https://beamcollege.dev/sessions/2025/implementing-ml-pipeline-ai-studio/

How difficult is to write a custom model handler?

class CloudVisionModelHandler (RemoteModelHandler):
def __init__(self):
"""DoFn that accepts a batch of images as bytearray
and sends that batch to the Cloud Vision API for remote inference

wnw

super().__init__(namespace="CloudVisionModelHandler", retry_filter=_always_retry)
def create_client(self):

"""Initiate the Google Vision API client.

client = vision.ImageAnnotatorClient()

return client

def request(self, batch, model, inference_args):
feature = Feature()
feature.type_ = Feature.Type.LABEL_DETECTION

The list of image_urls
image_urls = [image_url for (image_url, image_bytes) in batch]

Create a batch request for all images in the batch.
images = [vision.Image(content=image_bytes) for (image_url, image_bytes) in batch]
image_requests = [vision.AnnotateImageRequest(image=image, features=[feature]) for image in images]

batch_image_request = vision.BatchAnnotateImagesRequest(requests=image_requests)

Send the batch request to the remote endpoint.
responses = model.batch_annotate_images(request=batch_image_request).responses

return list(zip(image_urls, responses))

https://cloud.google.com/dataflow/docs/notebooks/custom_remote_inference

What models can | use with Runinference?

pipeline

o Ensemble

=
o Cohorts of models (A/B —
source
pattern)
data = p | beam.io.textio(files)
data | RunInference(model_a_handler)
EEEE— Model Model
data | RunInference(model_b_handler) A B
: :sink - 1 sink

https://cloud.google.com/dataflow/docs/machine-learning/ml-multi-model

Data preparation for dynamic
transformations

Data must be processed per key

Partitioning required, vertical
scalability issue

Calculations can only be dynamic
if they are inside a data
processing step

The partition define what kind of
guestions can be asked

For instance, game activity, key
by user id

Windowing

The data (and metadata) for the
transformation will be added to
the prompt as context

Again, vertical scalability issue
This defines the granularity of the
answers

But also greatly improves the
accuracy of the generated code
to solve the question

Logical pipeline (static)

Question
(side input)]

e G0 o 0 e R e e 50
coae

User io(, data User iol, [d1, d2, ...]

Side inputs: prompt creation
and code execution

Prompt: importance of context

Questions are important for the generation of the right code

But context is almost as important

o Data provide a lot of hints to the model about what code needs to be generated

o Metadata (e.g. schema) also helps the model to create accurate code
Side inputs

o Questions will be small, so we can “join” with the data through a side input
Prompt side needs to be:

o Small enough as to fit in the worker memory

o Small enough for the model used

m Forinstance, Gemma 3 has a limit of 128k tokens
o Large enough as to provide enough context to facilitate the task to the model

Physical execution (generate code)

Question

(side input)

Window 1

U 1 | =
ser % [Da‘ta 1] [ba‘ta 2] [Do\ta 3) : L—>(Prompt ' l Gezz&:ed]
)

U 2 |
ser —y [Da\ta 1) [Da‘ta 2] [Da‘ta 3] :_\3[Prompt l ' Gezz:a:eolj
'

Prompt structure

Context: Based *only* on the schema and sample data from a 1-minute window
of 'gaming_events', generate a SQL query for the user's question.

Table name: 'gaming_events'

ST CInEMl[Schema extracted from the data]

Sample data (first 3 rows): [IBEIERige]taRalXe|(e]0] R elgpp=11C-Te LR OIAV]

User question: [SIs[Ria]els1{

Generated code:

Generaoted code

Once the code is generated, how can | EleJ\"ALi?

Full pipeline (static)

N
Question
[(s?o(e input)
_J

Dataé Extract —_— APPI‘/ —=| G i P t Generated
user 3 window e . rome code J
; s |

User id, data User id, [d1, d2, ..] Side inputJ

Side inputs in streaming

When a PCollectionView of a windowed PCollection is created, the PCollectionView
represents a single entity per window (one singleton per window in this case).
Beam projects the main input element’s window into the side input’s window set, and then uses
the side input from the resulting window.

o ldentical windows — projection provides exact corresponding window.

o Different windows — projection used to choose most suitable side input window.
If the main input element exists in more than one window, processElement gets called once for
each window. Each call projects the “current” window for the main input element, and thus might
provide a different view of the side input each time.
If the side input has multiple trigger firings, the value from the latest trigger firing is used.

Side inputs in streaming: careful with the windows

1h

window of side input --------"" 7

Main input [d1 [da] [ds5 [d2] [d3

. . . ,/7
indow of main input --

(=

Conclusions and sample
projects

Beam, framework for complex inference patterns

Inference is much more than calling a model for a punctual prediction
Beam greatly simplifies the creation of complex patterns for streaming

inference

The future of Al is context
o Leverage data and metadata to improve the accuracy of the model in providing the best code

to solve the question

https://qithub.com/kfirnaftali/Talk-to-your-data

github.com/GoogleCloudPlatform/dataflow-solution-quides

Kfir Naoftali & Israel Herraiz

linkedin.com/in/kfir-naftali/
linkedin.com/in/herraiz/

3=AM

NYC 2025

